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Abstract. In peer-to-peer (P2P) systems where individual peers must
cooperate to process each other’s requests, a useful metric for evaluating
the system is how many remote requests are serviced by each peer. In this
paper we apply this remote work metric to flooding-based P2P search
networks such as Gnutella. We study how to maximize the remote work in
the entire network by controlling the rate of query injection at each node.
In particular, we provide a simple procedure for finding the optimal rate
of query injection and prove its optimality. We also show that a simple
prefer-high-TTL protocol in which each peer processes only queries with
the highest time-to-live (T'TL) is optimal.

1 Introduction

Flooding-based peer-to-peer systems like Gnutella [4] have been deployed and
used by millions of users worldwide to share and exchange files. As of April
2003, Gnutella has over one million users (with at least one hundred thousand
concurrent users [5]) and ten tera-byte of shared data. Also according to [3],
there are over 10 vendors actively developing Gnutella-style clients for their
applications.

While there is significant research interest in distributed hash tables [8] [9]
[11] [14], Gnutella-style systems are used in practice for four reasons: 1) simple
to implement, 2) easy to deploy, 3) extremely robust in handling frequent peer
arrivals and departures, and 4) supports wild-card searches. Moreover, in ad-
hoc wireless environments where unicast is just as expensive as broadcast, a
flooding-based mechanism is more desirable.

Although a flooding-based search mechanism can be inefficient as a search
query is forwarded to all nodes within a certain number of hops (e.g., 7 hops),
Gnutella-style networks have, nevertheless, scaled to millions of users by using
a super-node architecture where high speed (CPU and bandwidth) nodes act
as proxies for regular (slower) nodes. Figure 1 shows a sample super-node net-
work with 3 super-nodes and 16 regular nodes. Each super-node indexes the
content of its attached regular nodes and performs the flooding-based search on

9 This work is supported in part by NSF Graduate Fellowship and NSF Grants EIA
0085896, 11S-9817799, and CCR-0208683.



O regular node

. super node

Fig. 1. A sample super-node network.

behalf of the regular nodes. In this architecture, a network with millions of users
can be reduced to one with tens of thousands of super-nodes, where a flooding
mechanism is adequate.

Even with this architecture, super-node networks are still susceptible to over-
loading when too many search queries are generated by users. In the extreme
case, if every super-node uses all of its processing capacity to inject new search
queries instead of answering and propagating existing queries, no “useful” work
is done because queries are not answered by anyone. We define “useful” or re-
mote work as a super-node processing a query that is not inject by itself or by
its attached regular node. At the other extreme, if super-nodes inject too few
new queries, they will have available capacity to process remote queries, but
there will not be enough queries to keep the super-nodes busy. Thus, our goal
is to pick a query-injection rate between these two extremes that maximizes the
remote work performed.

We chose remote work as our objective metric because it succinctly captures
the goal of users. The more remote super-nodes that process a given user query,
the more potential answers the user will receive. From among the answers, the
user can then select those he wants, and the larger the selection, the better.
For instance, if the user searches for compositions by “Bach,” he can then select
titles that sound appealing, or files that have a good recording quality.

One approach to maximizing the remote work is to change the search protocol
itself, e.g., using random walkers [7] or iterative deepening [13]. In this paper we
attack the problem from a different angle: we control the rate of query injection
at individual super-nodes. We address the following questions:

— How do we model query injection, processing, and propagation in a Gnutella-
style system?

— What is the optimal number of new queries that each super-node should
inject each round as to maximize the remote work done in a network?

— What is the impact of using different protocols to select which queries to
process and propagate? Is there an optimal protocol?

— Should we enforce a fair policy where every super-node injects the same
number of new queries into the network? Or should highly-connected super-
nodes in the “critical” part of the network inject more queries (or less)?

— What is the penalty in terms of reduced remote work for using a fair policy?



— What are some heuristics for more complex systems that are outside of our
simple model?

Daswani et al. in [1] conducted simulations to answer some of the above ques-
tions focusing on the impact of malicious super-nodes who purposely generate
large number of bogus queries to reduce the amount of “useful” work done in
a flooding-based peer-to-peer system. In the current paper, we do not consider
malicious super-nodes doing denial-of-service (DoS) attacks using bogus queries.
Instead, we assume all super-nodes are cooperating to maximize useful work in
the network. The results in this paper provide a firm theoretical foundation for
studying the effects of DoS attacks and establish a baseline of comparison. These
results can be easily incorporated into [1] to further extend their results.

Knowing the theoretical optimal rate of query injection and the maximum
remote work possible can improve the construction of the overlay network. For
example, a super-node can use the optimal query-injection rate to dynamically
decide whether it should accept more clients or disconnect existing ones. We can
also use remote work as metric to evaluate different types of overlay topologies.

Although our work is specific to Gnutella-like systems, we do address an is-
sue that we believe will be of growing importance in distributed systems, that
of getting autonomous components to provide services for each other. Whether
the system is a publish-subscribe one, or a sensor net, or an ad-hoc wireless
network, nodes must balance their local needs (e.g., disseminate events or mes-
sages originating locally) with the services they provide to others (e.g., packet
forwarding, resource discovery). As far as we know, this “distributed resource
coordination” problem has not been studied in detail. Our paper is a first study
of such coordination for autonomous systems.

2 Assumptions and a Model

We use a very simple model of Gnutella to capture key performance characteris-
tics that are relevant to our goal of maximizing remote work. Given that regular
nodes always access the network via a super-node, we only need to capture the
activities of the super-nodes. Specifically, we model the super-node network as a
graph G = (V, E) where edges represent connections between super-nodes. For
brevity, when we say “node” in the remainder of this paper, we mean super-node
unless stated otherwise explicitly.

We model the P2P system as operating in rounds, where search queries are
injected and processed during the round and forwarded to neighboring peers
between rounds. Although the system does not have to be sychronous, we will
assume sychrony for analysis purposes. Note that queries “injected” by a super-
node are typically initiated by the regular nodes attached to it.

We assume each query has a time-to-live (TTL) field that is decremented by
one each time when forwarded to other peers. When the TTL becomes negative,
the query is removed from the network. For our purpose of maximizing remote
work, we only model the propagation of search queries and ignore other commu-
nication such as search replies, ping-pong messages, and actual file transfers.



We also assume the bottleneck of the system is the processing capacity of
the super-nodes rather than the network bandwidth. Furthermore, we assume
receiving queries from the network has negligible processing cost as compared to
the actual processing of a query. There are three reasons for these assumptions:
(1) super-nodes have excellent network connectivities, e.g., 10 megabits or better;
(2) backbone bandwidth is grossly over-provisioned; and (3) wild-card search
queries are expensive to evaluate because simple hashing techniques do not work
well.

We assign each super-node a processing capacity of C' queries per round. A
super-node may use its capacity in two ways: (1) accept and process a new search
query from an attached regular node, or (2) process a remote query forwarded
to it by a neighboring super-node. We refer to case 1 as a super-node injecting
new queries, and refer to case 2 as processing remote queries. For clarification,
processing a remote query involves two steps: one, match the query against the
shared data indexed by this super-node; and two, forward this query to neigh-
boring nodes. Obviously in a single round, the number of new queries injected
plus the number of remote queries processed is at most C.

In most of our analysis in this paper, we assume all nodes have the same
processing capacity to make the analysis tractable. Although Sariou et. al. [10]
observed large variations among Gnutella clients, variations among super-nodes
are much smaller. We will briefly outline the difficulties in handling super-nodes
with different capacities as an open problem in Section 9.2.

Although each node can only process up to C' queries per round, its neigh-
boring nodes may send it more than C' remote queries. Because we assumed that
network bandwidth is not the limiting factor and that the cost of receiving data
from the network is negligible, we allow each node to receive all the incoming
remote queries even if it does not have the capacity to process them all. A node
must then decide which remote queries to process this round and drop the re-
maining queries. We do not allow a node to “temporarily” buffer excess remote
queries for processing at a later round because we are interested in the long-term
system behavior where nodes are constantly overloaded.

The long-term behavior of a peer-to-peer system certainly depends heavily
on how each node decides which queries to process and drop. For brevity, we
use the term protocol to refer to a node’s decision mechanism. As an example, a
node is said to be using a random protocol if it picks which queries to process
uniformly at random.

One important parameter of a protocol is how a node divides its capacity
between injecting new queries and processing remote queries. We use a fraction p
between 0 and 1 to denote this parameter. For example, p = % implies one third
of a node’s capacity is allocated for injecting new queries while the other two
third is used for processing remote queries. We assume that a super-node injects
its full quota of pC' new queries each round, i.e., there is always an abundance
of queries that regular nodes want to submit. This assumption is reasonable
because our goal is to study the maximum amount of remote work possible
which can only occur if nodes are generating sufficient number of new queries



to keep the system busy. In practice, a super-node can inject new local queries
at a fixed rate by buffering and delaying new search queries from its attached
regular nodes.

Rather than trying to build an accurate model that can predict the actual
performance of the peer-to-peer system, we have made many simplifying as-
sumptions to make our study of the fundamental system behavior feasible. This
simplified model retains all the important aspects of a flooding-based peer-to-
peer protocol and does not restrict design decisions.

3 Notation and Problem Definition

— py denotes the fraction of processing capacity node v allocates for injecting
new queries per round.

— p={pv | v € V} denotes the set of p, used by all nodes in network G.

— 6(u,v) denotes the minimum hop distance between nodes u and v in network
G.

— D(v,T) denotes the set of nodes u, excluding v, in G such that d(u,v) < 7.

— D(v,7) denotes D(v,7) U {v}.

— W/ (v, p) denotes the set of queries processed by node v, using protocol P
with settings p for the nodes, during round ¢. The set W/} (v,p) includes
both new queries injected by v and processed remote queries. We drop the
superscript P when the context is clear.

— RF (v,p) C W[ (v, p) denotes the set of remote queries processed by node v
at time ¢.

— RW}(p) =X,y |RF (v, p)| denotes the number of remote queries processed
by all nodes in network G at time ¢.

With the notation above, maximizing the remote work of a network G using
protocol P can be stated formally as:

Problem: Given a graph G = (V, E), maximum TTL 7, processing capacity C,
and a protocol P, find the optimal rate of injecting new queries p = {p, | v € V'}
such that >, RW/ (p) is maximized.

The maximization problem is stated above as the cumulative number of re-
mote queries processed over all nodes and all time. We chose to sum over all
time to take into account of protocols with nondeterministic or irregular behav-
iors. However, as we will see, the protocols studied here all have some form of
“steady-state” behavior.

4 Protocols

Before describing the protocols, we first need to discuss how to tag each query
with an ID to avoid processing duplicate queries and to remove queries when
their TTL expires. For a query ¢, we use a triplet (src, ttl, mid) where src is the



Deterministic Prefer-High-TTL Protocol HP

During every round, each node v € V performs the following tasks in the order shown
below:

1. Inject po + C new queries with the triplet identifiers
{v,7,1},{v,7,2},...,{v,7,psC}. Denote this set of local queries L,. (For
clarity in the presentation, we assume p,C is an integer. We can take the floor if
it is not an integer.)

2. Sort all incoming queries from adjacent super-nodes in decreasing order of TTL,
break ties in a deterministic manner that is independent of the current time, and
remove queries that are duplicates or have already been processed at some previous
time step. Denote this sorted list of new incoming queries I,.

. Take the first (1 — p,)C queries in I,,. Denote this set of remote queries R,,.

. Service queries in L, and R, against local index.

. Decrement the TTL of queries in L, and R, by 1.

. Forward all queries in L, and R, that have TTL > 0 to all neighbors.
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Fig. 2. An informal description of the deterministic prefer-high-TTL protocol.

node that injected the query, ttl is the current time-to-live of ¢ as ¢ moves around
the network, and mid is an internal sequence number where 1 < mid < C. We
enforce three invariants about the IDs: (1) for any two queries injected by the
same node in the same round, their mids are different; (2) 0 < ttl < 7 where 7 is
the maximum TTL; and (3) a query with ID (sre, ttl, mid) at time ¢ is injected
at time t — 7 + ttl.

Note that when the query travels around the network, its ID changes as the
ttl is decremented. To determine whether two query IDs ¢; and ¢o at times t;
and t, respectively, refer to the same query, we check whether these two IDs
have the same src node, the same mid, and were injected into the network at
the same time. For example, assuming all queries initially have a TTL 7 when
injected, then a query with ID ¢; = (u,5,2) at time step 8 is the same query as
a query with ID ¢» = (u, 3,2) at time step 10 because both queries are injected
by node u at time 8 + 5 —7 =10+ 3 — 7 = 13 — 7 with sequence number 2.

Using these IDs, we describe the operations of the deterministic prefer-high-
TTL protocol HP in Figure 2. Essentially, after each node injects its new queries
for the round, it then processes remote queries in decreasing TTL order until
the processing capacity has been exhausted. If two queries have the same TTL,
the tie is broken deterministically, e.g., lexicographically by source node ID and
then the sequence number.

Similarly, the randomized prefer-high-TTL protocol #® performs the same
steps as HP except ties are broken randomly. Though H”? and HP are very
similar, they exhibit different steady-state behavior as we will see in the next
section. This distinction has significant impact on how efficiently we can simulate
the protocols for experimental studies. A third protocol that we will use for
illustrative purposes is the prefer-low-TTL protocol L. Instead of sorting all the



incoming queries in the set I, in decreasing order of TTL during step 2 (of Figure
2), protocol £ sorts the queries in increasing order of TTL.

5 Steady State

Regardless of the transient behavior at the beginning of time, a protocol that
processes the most remote queries in the steady state will process the most
remote work in the long run. Therefore, if two protocols have steady states,
then we can simply compare their per-round performance in the steady state. It
turns out that not all protocols have some form of steady state. In the technical
report [12] , we trace out the execution of the prefer-low-TTL protocol £ on a
chain of five nodes where the per-round remote work oscillates with periodicity
2.

There are two flavors of steady state that are of particular interest because
they distinguish between protocols HP and H™. The first kind is a strong steady
state where we can determine exactly which queries will be processed by every
node. Formally,

Definition 1. (Strong steady state) A protocol P has a strong steady state if
given any p, there exists to such that for every node v and all t > to, R} (v,p) =

R} (v,p).

In other words, strong steady state guarantees that after time tg, each node
will process remote queries with the same triplet ID as the previous time step.
For example, if node v processed a query with ID (u, 5,2) at time #g, then v will
process a query of the same ID from then on. Thus having a strong steady state
makes simulation studies easier. Note that the same triple ID at two different
times does not mean the same query because the two queries are created at
different times.

An alternative is to relax the constraint of processing queries with the same
triplet IDs.

Definition 2. (Weak steady state) A protocol P has a weak steady state if given
any p, there exists to such that for every node v and all t > to, |R} (v,p)| =

|RT (v, p)|-

A weak steady state only requires the number of remote queries processed
to be the same rather than the query IDs to be the same. Since our objective
is to maximize the total number of remote queries processed, having a weak
steady state is sufficient for our analysis. Clearly, strong steady state implies
weak steady state.

With these two notions of steady state, we now show protocol H” has a
strong steady state. In particular, we show H” has a monotonicity property.

Proposition 1. (Monotonicity) In protocol HP, given p, for any node v and a
query ID q = (src, ttl, mid),



1. if g € Wr_w1,(v,p), then ¢ € Wy(v, p) for all t > T — ttl,.
2. if g € Wy(v,p) for some t > 1 —ttly, then ¢ € Wr_sy, (v, p).

Monotonicity states that once a query ID ¢ is in Wy, (v, p) for any node v and
time #;, the ID ¢ can never disappear from Wy, (v, p) for all to > t;. It also
guarantees the first appearance of ¢ is at time 7 — ¢tl,. The monotonicity is
the result of breaking ties among queries of the same TTL in a deterministic
fashion. Using this monotonicity, one can show that protocol H? has a strong
steady state.

Theorem 1. Protocol HP reaches a strong steady state in T time steps.

Our proofs of Proposition 1 and Theorem 1 are given in the technical report [12].

Unlike protocol H?, the randomized version H” only has a weak steady state.
Clearly H™ does not have a strong steady state because the random selections do
not guarantee a node will consistently choose remote queries with the same IDs.
The fact that H” has a weak steady state is a directly corollary of a theorem
in the next section that states both protocols HP and H® are “optimal” in
the number of remote queries processed. Since H? and H™ processes the same
number of remote queries and H? reaches a strong steady state in 7 time steps,
then H™ must reach a weak steady state in 7 time steps.

6 Optimality of Protocol #*

We now show that for any settings of p, the two prefer-high-TTL protocols, H?
and H", processes as much remote work as any other protocols using the same
p settings, and hence are optimal. Since protocol H? is a special case of protocol
H™, we only show the optimality of protocol H*. We prove this claim by first
establishing an upper bound on the amount of remote work any protocol can
process, and then showing protocol H*achieves this upper bound.

For the upper bound, notice that regardless of which protocol we use, the
number of remote queries a node v can process, |R¢(v,p)|, is limited by two
factors: (1) node v’s processing capacity, and (2) how many queries are injected
by nodes within 7 hops of v. At maximum capacity, a node v can process (1—p,)C
queries per round. We call such a node saturated.

When a node v is not saturated, it can receive up to K, =C - EueD(U’T) Pu
queries from nodes within 7 hops. For protocols without steady state, the actual
number of queries processed by node v may vary between rounds, (e.g., process
no queries during one round, but a large amount the next round); however, the
average number of queries processed per round, over time, is bounded by K, .

We get our upper bound by combining the two limiting factors and taking
the minimum number of remote queries processed in case 1 and case 2 (along
with a special case when t < 7).



Proposition 2. For any protocol P, any node v, and any setting p,

Z'Rt(vaﬁngczmln 1_pv; Z Pw
t t

weED (v,min(7,t))

We now show in two steps that protocol ™ achieves this upper bound. In the
first step, we claim that if a node v’s “neighbors” cannot inject enough queries to
continuously saturate v, then node v will process every query injected by these
“neighbors.” Stated formally,

Lemma 1. Consider protocol H* and any node v. Suppose for some hop count
h <7, ¥ wepn Pw < 1= py. Then for all nodes w € D(v,h) and all i such
that 1 < i < p,C, the query with triplet ID (w, 7 — §(w,v),i) € Ry(v,p) for all
time t > 0(w,v).

In the second step, we claim that if node v’s “neighbors” are continuously
injecting more queries than v can process, then node v processes exactly (1—p,)C
queries each round. Formally,

Lemma 2. In protocol H*, for any node v and hop count h, if EweD(v,h) Pw >
1 — py, then node v is saturated after time h, i.e., |Ri(v,p)| = (1 — p,)C for all
t> h.

This claim is not immediately obvious because the random selections in pro-
tocol H® may result in many duplicate queries arriving at a node v and re-
duce the number of remote queries processed. Fortunately, the prefer-high-TTL
mechanism ensures “enough” non-duplicate queries arrive at v to saturate its
processing capacity. The detailed proofs of these lemmas are given in the tech-
nical report [12].

Combining Lemmas 1 and 2 with h = 7, we get that if node v’s neighbors
within 7 hops do not inject enough queries to saturate v’s processing capacity,
then node v processes every query injected by them. On the other hand, if
there is more than enough queries, then node v processes at maximum capacity
(1 = py)C. Consequently,

Theorem 2. In protocol H®, for any node v and any setting p,
|R¢(v,p)| = C -min | 1—p,, Z Pu
u€D(v,min(7,t))

Applying Theorem 2, we immediately obtain that ) , |R:(v,p)| is equal to
the upper bound established in Proposition 2. Hence,

Corollary 1. No protocols can achieve more remote work than protocol H*.



Find_Optimal_Single_p:

1. order the vertex set V = {v1,vs,...,v,} such that [D(vi,7)| < |D(vir1,7)|.

2. construct the sequence of non-increasing real numbers {d1,d>,...d,} where d; =
I
B )

3. find the smallest k such that 3 ;_, |D(vi, )| > n.

4. return d;.

Fig. 3. Procedure for finding the optimal p when all nodes have the same p.
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Fig. 4. Four example topologies.

Another important consequence of Theorem 2 is that in computing remote
work, we do not have to worry about which queries were duplicates or which path
a query traveled on. Therefore, we can treat all queries as indistinguishable from
each other and rewrite our optimization problem into a simple linear program
(LP). The LP is given in the technical report [12]. However, solving the LP
gives us little insight into the problem’s structure. The next section builds such
insights for a special case of the problem where each node has the same p setting,
i.e., py, = p for all v.

7 Identical p for All Nodes

The instance of every node having the same p is of particular interest because it
captures fairness in the super-node network. In other words, every super-node
injects the same number of new queries into the network. This instance also
arises when the software clients have a hard-coded and pre-determined capacity
allocation. Clearly, finding the optimal p setting that maximizes the total remote
work is dependent on the network topology. In addition to presenting a procedure
for selecting the optimal p, we also show that imposing this “fair” criterion of
identical p for all nodes does not significantly reduce the maximum amount of
remote work.

Figure 3 shows our procedure for selecting p. To illustrate, consider examples
(a), (b), and (c) in Figure 4. We first write out | D(v;, 7)| for all nodes v; in a non-
decreasing sequence, and then add the numbers in sequence from the beginning
until the sum exceeds the number of nodes. When we stopped adding at node

1, the optimal p is the corresponding d; = \D(vlir)l In example (a), we get the

sequence of |D (v, 7)| as {3,3,3}. Because 3 is the number nodes in this network,



we stop immediately at ¢ = 1 and get the optimal p = %, as expected. Moving
to the more complicated examples, we see example (b) generates the sequence
{2,2,2,2,2,2,7}. After adding the first four 2s, we get 8 > 7, thus the optimal

p=ds = m = 1. In example (c), we get the sequence {3,4,4,5,5} which

yields the optimal p = ; when 3 +4 > 5.
The correctness of the Find Optimal_Single_p procedure is the result of the
following theorem.

Theorem 3. In protocol H® with the same p, the optimal p = di, where k is
the smallest integer such that ), ., |D(v;,7)| > n.

The formal proof is given in the technical report [12]. Here we outline the
general idea behind the theorem. Note that given any p, we can divide the nodes
into two categories: the set of saturated nodes S and the set of unsaturated
nodes U. Now consider using p' = p + € for some € > 0. For all nodes v € S,
v’s remote work is reduced by e, i.e., we lose a total of R~ = ¢€|S|. However,
for all nodes w € U, w’s remote work has increased by e|D(w, )|, or we gain
Rt = €Y, cu |D(w,7)|. Thus intuitively, when R~ = R, we have found a
candidate for the optimal p. Fortunately, there is only one such candidate, which
corresponds precisely to Theorem 3.

There is a special case for Theorem 3 when ). . |D(v;,7)| = n. In this
situation, there are multiple optimal p for a single round in the steady state.
Specifically,

Corollary 2. If ., |D(vi, 7)| = n for some k, then for all p where dy, > p >
dry1, RW (p) is optimal.

Example (d) in Figure 4 illustrates this occurrence of multiple optimal p.
The sequence of {|D(v;,7)|}; in this case is {2,2,3,3}. Notice that |D(vy,7)| +
|D(vs,7)| = 24 2 = 4 which is the number of nodes. By Corollary 2, we can
conclude for example (d), any p where + < p < 1 yields the optimal amount of
remote work in a single round of the steady state.

Now that we know how to find the optimal for this special case of identical
p for each node, a natural question is how much remote work did we sacrifice in
restricting to the special case instead of using arbitrary p? To bound this amount
of lost remote work, we use the following the theorem.

Theorem 4. For any connected network G = (V,E) where |[V| = n > 7+
1, compute the optimal p using the Find_Optimal Single_p procedure. Then in
steady state, RWy(p) > Z3nC.

The proof follows from a lemma used in proving Theorem 3 and is given in
the technical report [12]. The immediate consequence of Theorem 4 is that even
with the restriction of identical p’s, nodes in the network are processing at =
of the maximum capacity. Hence, the fraction of loss due to the restriction is at
most Tlﬁ A secondary consequence is that regardless of what kind of network
G we use, we can always process remote work at — of the capacity.



8 Different p for Each Node

If we have all nodes inject the same number of queries into the network, some
nodes will not operate at their maximum capacities. Thus it is possible to achieve
more remote work by allowing nodes to inject different amounts of work, i.e., use
a different p for each node. To illustrate the difference in the amount of remote
work, we reuse the examples in Figure 4. In (b), by setting the p for the center
of the star to 1 and 0 for the other nodes, we can saturate every node and get a
total remote work of 6C. In contrast, the identical-p case only yields total remote
work of 2C. Similarly, we get 4C' and 2C for examples (c) and (d) respectively
by setting the p of the nodes with the highest degrees to 1 and 0 for the other
nodes. Using identical p, we get C and 2C respectively for examples (c) and
(d).

In this general case where nodes can have different p values, there are many
possible optimal solutions. In particular, there is one subset of the optimal so-
lutions that corresponds to the minimum fractional dominating-set (MFDS) of
distance 7 for the network topology graph G = (V, E). In MFDS, each node
v is assigned a weight w, where 0 < w, < 1. The dominating set condition is
that for every node v, the sum of the weights from nodes within 7 hops of v
is at least 1. The goal is to come up with a set of weights w, that satisfies the
dominating condition while minimizing the sum of the weights. The MFDS is
a well understood problem. Reducing our problem to the MFDS exposes some
underlying structure in finding the optimal p,’s and allows us to leverage many
existing techniques for solving it. Fortunately, there is a simple mapping from
an optimal solution of MFDS to our problem. Specifically,

Theorem 5. For any optimal solution {w,} to the minimum fractional dom-
inating set of G with distance T, the solution p where p, = w, mazximizes the
total remote work in the network G.

To prove the above claim, we observe that when all nodes are saturated,
maximizing remote work is equivalent to minimizing new-query injection (i.e.,
MFDS). Therefore we simply need to show that there exists an optimal p where
all nodes are saturated. Intuitively, for any optimal § where some node v is not
saturated, we can “boost” p, until v is saturated without changing the amount
of remote work. The details of this “boosting” step and the proof of Theorem 5
are given in the technical report [12] .

Although using different p’s leads to more remote work, note that we are
setting p to 0 for a large number of nodes, which means these nodes cannot
inject any queries. In practice, a node that cannot inject any queries is not
useful. Therefore a combination of using a small fixed p (e.g., using d, from
the previous section) to guarantee some fairness while allocating the remaining
capacity through the dominating set is more practical.



Distributed pC Estimation

For every 27 rounds (say at time t), each node v € V' does the following:

1. If [We(v, pv)| < C (i.e., not enough remote work),
2. broadcast an inc(l — W) message with TTL 7.
3. If [We(v, pv)| > C (i-e., too much remote work),
4.  for every node w such that I(w, ttl, mid) € Wy (v, py)

5. send a dec(w — 1) message to node w.

Upon receiving an inc(p) or dec(p) message, each node adjusts its pC by 1 with prob-
ability p.

Fig. 5. An informal description of a distributed pC' estimation heuristic.

9 Open Problems

We now outline two open problems that are practical variations of the maximiz-
ing remote work problem we studied in this paper.

9.1 Distributed Algorithm

In Sections 7 and 8, we described centralized solutions for finding the optimal
p for each node that maximizes the total remote work in the network. Our
solutions require knowing the entire network topology in advance. However in
a P2P environment, with nodes constantly joining and leaving, it is impractical
for any node to gather the entire network topology information. Even if we
could efficiently gather such information, the rapidly changing topology will
quickly render a solution based on the current topology obsolete and sub-optimal.
Nevertheless, the results about the centralized solutions are important because
they form the basis of comparison for distributed solutions.

For the instance of using a different p for each node, distributed solutions
are possible by adapting fractional dominating set algorithms [2], [6]. However,
these algorithms have long running times for our problem, cannot handle dif-
ferent capacities at each node, and must be re-run each time as the network
topology changes. Here, we propose a simple heuristic for estimating how many
new queries each node should inject (i.e., the value of p,C for each node v) in a
distributed fashion. Figure 5 outlines the steps in our distributed approach. Ev-
ery node only makes local decisions. When a node does not have enough queries
to saturate its processing capacity, it tells all of its neighbors to inject one more
local query per round. If a node has too much remote work, it tells all the nodes
that have sent remote work to it to inject one less local query per round. We have
performed some initial simulations to compare our heuristic against the optimal
solution. The heuristic performs very well when the capacity C, in number of
queries, is large compared to the number of nodes within 7 hops.

The randomization for inc(p) and dec(p) is necessary to avoid oscillation and
to stabilize the system. However, the resulting stable setting may not be optimal.



Hence, a better solution is needed. However, note that the proposed heuristic is
estimating the number of new queries pC' rather than the fraction of capacity p
as in the fraction dominating set approach. Thus this heuristic does not assume
all the nodes have the same capacity C.

9.2 Nodes with Different Capacities

In reality, super-nodes may have different processing capacities. The results from
the previous sections no longer hold because we cannot determine, independent
of the network topology, when a node is saturated. Recall that if nodes have
the same capacity, then Lemma 2 guarantees that a node v is saturated when
v’s neighbors are injecting more queries than v’s capacity. However, when nodes
have different capacities, there is a simple counterexample.

Consider nodes u, x, and v connected in a line in that order. Now assign
capacity 2C to nodes v and v and capacity C to z. Since all the work from u
must travel through z to reach v, the amount of remote work at v is limited by
the capacity at z. Even if node u is injecting 2C' queries, at most C of them
will reach v each round, which invalidates Lemma 2 for the case of different
capacities. In this particular example, the extra capacities at nodes u and v are
irrelevant.

Even for the simple case where only one node z has more capacity than the
rest, the solution is non-obvious and topology dependent. For example, if z is
in an area of the network where nodes are under-saturated, then it should use
its extra capacity to inject more queries. On the other hand, if x is in an area
where nodes are already saturated, then the extra capacity should only be used
to increase the amount of remote work at node z.

Our current approach is an incremental heuristic that combines multiple
optimal solutions. The basic idea is as follows: Suppose nodes have one of two
possible capacities C; and C3 where C; < C3. Then our heuristic is to find the
optimal p setting for the entire network assuming all the nodes have capacity Cj.
We then create a subgraph of the original network that includes only nodes with
capacity Cy. Note that the subgraph may be disconnected. We then compute
another optimal p’ setting on the subgraph assuming all the nodes have the
capacity Cy — Cy. For nodes with capacity Ci, their corresponding p' value is 0.
To get the final solution, we let each node inject p,C1 + pl,(Ca — C1) queries.

10 Concluding Remarks

This paper uses a simple model to study remote work in a flooding-based peer-
to-peer network. In particular, we showed

1. For any setting p, protocol H* processes the most remote work.
2. Under protocol H® with all nodes using the same p, if we order the nodes

{v1,...,vx} where |D(vi,7)| < |D(vip1,7)|, then the optimal j = ﬁ
Vg, T

where k is the smallest integer such that Zle |D(vs, )| > n.



3.

When nodes use different p, any optimal solution to the minimum fractional
dominating-set of the network graph G is an optimal p solution.

We believe that our results can serve as a benchmark for more complex

systems. For example, the proposed heuristic load management scheme of Section
9.1 can be compared against a system where p is selected using our optimal and
centralized solutions. In addition, our solutions can form the basis for heuristics,
as illustrated in Section 9.2.
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