
Authenticity and Availability in PIPE

Networks

Brian F. Cooper, Mayank Bawa, Neil Daswani, Sergio Marti

and Hector Garcia-Molina

Department of Computer Science

Stanford University

fcooperb,bawa,daswani,smarti,hectorg@db.stanford.edu

Abstract

We describe a system, which we call a Peer-to-peer Information Preservation and

Exchange (PIPE) network, for protecting digital data collections from failure. A

signi�cant challenge in such networks is ensuring that documents are replicated and

accessible despite malicious sites which may delete data, refuse to serve data, or

serve an altered version of the data. We enumerate the services of PIPE networks,

discuss a threat model for malicious sites, and propose basic solutions for managing

these malicious sites. The basic solutions are ineÆcient, but demonstrate that a

secure system can be built. We also sketch ways to improve eÆciency.

Key words: digital preservation, malicious sites, failures

1 Introduction

For centuries, librarians and archivists have studied methods for preserving
paper library materials despite acidic paper, humidity and broken bindings.
However, the prevalence of digital collections means that preservation must be
reconsidered. Hard drives may crash, users may accidentally delete data, pub-
lishers may go out of business and shut down servers that are providing digital
materials. In a cooperative environment, such as a grid computing infrastruc-
ture, loss of information can cause more than a temporary inconvenience to
one user; it may mean the loss of vital, diÆcult to reproduce scienti�c results,
as well as the interruption of important computations that depend on this
data. Similarly, in a distributed digital library, loss of digital documents can
mean permanent loss of valuable cultural artifacts.

Preprint submitted to Elsevier Science 26 August 2003



To avoid the loss of critical materials, data must be replicated at multiple sites.
After a site failure, data can be restored from another site. Several systems
have been built on this principle, including OceanStore [12], LOCKSS [22] and
SAV [5,6]. However, the replication solution introduces a new set of challenges:
how to ensure that the backup sites can be trusted to produce authentic copies
of the stored data. For example, a scientist, Jane, may store information about
her experiments at a remote site that employs another scientist, Joe, who is
performing similar experiments. If Joe is unethical, he may want to prevent
Jane from retrieving her data, so that he can claim the work as his own or at
least slow down Jane's progress. Joe may destroy Jane's data, or modify it so
that it contains incorrect information. Joe may also reprogram his site's server
to refuse requests to serve the data. In any event, if Jane's site has a failure
and she must retrieve the information from Joe's site, she will be stymied
by Joe's malicious actions. As another example, people that disagree with a
particular document, such as \The Origin of Species," may try to delete or
alter all copies of that document.

An archival system must be designed to prevent, detect, manage and/or re-
cover from these malicious behaviors, so that the preservation infrastructure
can provide services to its users. Similarly, a complete system must ensure
that important data remains preserved even if the creator or publisher leaves
the system, that users can verify the authenticity of retrieved documents, that
agreements remain valid years after they are originally concluded, and so on.

Our approach to dealing with these problems is to develop a reliable preser-
vation service built on a peer-to-peer architecture. Such a Peer-to-peer Infor-

mation Preservation and Exchange (PIPE) service would serve as a reliable
substrate on top of which other distributed grid and digital library applica-
tions could be built. Building a replication system on a peer-to-peer architec-
ture has several advantages, including the fact that it matches closely with
the P2P philosophy (present in grid systems as well) of harnessing multiple
resources that in aggregate are more powerful than that of any one member.
Moreover, while the distributed nature of a PIPE service could open the door
to malicious users, cooperation among the \good" nodes in the system can be
leveraged to deal with malicious attacks.

In particular, it is necessary to adapt existing techniques to work in a dis-
tributed, autonomous P2P architecture. For example, public-key cryptogra-
phy [8] may be employed as a component of a preservation system. However,
public-key techniques often require a centralized certi�cate authority, and this
requirement must be reconciled with the P2P philosophy of \no centralized
services." Other techniques that have been developed to deal with failures
and maliciousness include byzantine agreement [15], distributed transaction
commit [18], cryptography, replication techniques [10,4], and reputation man-
agement [14,17]. While each of these techniques may be useful, our goal here

2



is to construct a complete framework for a PIPE system, so that we may
understand the relevant challenges and then choose (or develop) appropri-
ate techniques to meet these challenges. Moreover, it is important to ensure
that the techniques used scale to potentially large networks and continue to
work for potentially very long time periods. More related work is examined in
Section 5.

In this paper, we discuss our vision of a PIPE system. We are not present-
ing any complete solutions, but rather arguing that providing the end-to-end
preservation services, despite failures and maliciousness, is a hard and unsolved
problem, requiring the attention of our community. To make this argument:

� We present a strawman design for a PIPE system, listing the basic services
that the system provides. This design provides a framework for discussion.
(Section 2)

� We discuss the main challenges presented by malicious nodes to such a
system. (Section 2)

� In order to deal with these challenges, multiple techniques must be used, and
we sketch how existing techniques can be used to deal with the challenges in
a PIPE system. We also point out the gaps that must be �lled by ongoing
research. (Section 3)

� Finally, we suggest techniques that can potentially �ll these gaps. (Section 4)

While it may be impossible or prohibitively expensive to guarantee safety from
malicious nodes with any number of safeguards, our goal is to \raise the bar,"
making it harder for nodes to act maliciously, while preserving eÆciency and
scalability. We also discuss related work (Section 5) and present our conclu-
sions (Section 6).

2 Basic PIPE architecture

2.1 Peer-to-peer architecture

The PIPE network is composed of peers, or archive sites, that cooperate with
each other to provide a preservation service. For example, a peer may be a
university library, a government agency, or a corporation. This preservation
service archives and serves digital documents. Examples of digital documents
include JPEG images, Postscript documents, audio clips, or collections of sci-
enti�c measurements. Because the peers are distributed, they must commu-
nicate by sending messages over some underlying communications network
(e.g., the Internet).

3



Each peer provides resources for use by other peers. For example, a peer o�ers
storage space for copies of digital documents, processing capability to answer
searches, and bandwidth for serving documents. We chose a peer-to-peer archi-
tecture for the PIPE system because it is especially well-suited for the problem
of digital preservation since such a system can e�ectively leverage resources
scattered at distributed, autonomous sites. First, the aggregate resources of
the system (storage space, bandwidth, etc.) are larger than any one site has
or can a�ord. Second, the system preserves the autonomy of sites, since each
site makes local decisions when interacting with the network, rather than hav-
ing to submit to a centralized controller. This makes it more likely that sites
will participate in the system. Third, a peer-to-peer network is resilient to
peer failures and localized network failures. This is because the network is a
collection of distributed, heterogenous sites and binary communication links
that operate independently, even as other nodes and links fail. Finally, be-
cause backup copies of documents are stored \on-line" at other peers, lost or
corrupted copies can be quickly restored simply by retrieving a copy of the
backup over the network.

2.2 PIPE services

The PIPE infrastructure should provide end-to-end preservation of digital
documents. By \end-to-end preservation" we mean the system ensures that
documents, once published, always exist in the system, can be discovered by
users performing content-based searches, and can be retrieved by those users.
More speci�cally, we propose a PIPE system that o�ers the following services:

� join(): Gives a new node i a list of nodes already in the PIPE network, and
informs each of these existing nodes about i's existence.

� publish(D): Given a document D, publishes D to the network.
� search(q): Given a descriptive search q (such as keywords or metadata),
returns the ids of documents that match q, and the ids of nodes holding
copies of those documents.

� retrieve(D; i): Given a document id D and a peer id i, retrieves a copy of
the document from the peer.

In Section 3, we sketch how various techniques can be employed to implement
these operations in a secure manner.

2.3 Malicious node threat model

Peers in the PIPE network cooperate to provide publishing, search and re-
trieval services. Unfortunately, a malicious node may appear to contribute to

4



the service, but instead act to subvert the service. In particular, a malicious
user or site may try to disrupt the PIPE service in several ways:

A. Publish a document using the same id as an existing document. Then, when
a user expects one document, that user will receive the attacker's document
instead.

B. Agree to store a copy of a document, but delete it instead.
C. Agree to store a copy of a document or an index of documents, but refuse

to perform (some or all) search operations. This may prevent good nodes
from �nding documents.

D. Agree to serve a document, but serve an altered copy instead, or decide
later not to serve the document.

E. Coordinate attacks with other malicious nodes (to avoid detection or in-
crease the severity of the attack.)

F. Masquerade as a di�erent peer.
G. Modify otherwise authentic messages. This disrupts the ability of good

nodes to communicate.
H. Lie in response to any request for information. This disrupts the ability of

good nodes to get a picture of the state of the system.

If these behaviors are surreptitious, it may be diÆcult to discern that the node
is malicious or speci�cally what its malicious behavior is.

In addition to these attacks, a PIPE network is also vulnerable to malicious
activities common to any distributed system, such as viruses, trojans, hackers,
denial of service attacks [19], and so on. Much research is currently focused
on these challenges. Techniques that are useful for general distributed systems
are also useful for a PIPE network. Here, we focus on the problems unique to
the PIPE network.

3 Implementing a PIPE service

In this section, we examine a \strawman" implementation of the PIPE service.
This implementation must deal both with failed nodes and malicious nodes. A
failed node is one that has stopped working, and no longer responds to mes-
sages. A malicious node may continue to receive, process and send messages,
but may do so in order to subvert the network for its own ends. In particular,
a malicious node may decide not to live up to agreements it has made with
other nodes. A good, live node has neither failed nor is malicious.

5



3.1 Assumptions and requirements

We assume that in a network of n nodes, up to m nodes may be malicious at
any one time, while up to k otherwise good nodes may have failed. The value
of k might be calculated from the expected error rates in the system, while m
can be chosen to represent the robustness of the system to attacks: a higher
m can tolerate more malicious nodes but at a potentially high price.

We also assume that there is a bootstrap mechanism for discovering nodes
that are in the network. This mechanism, which is required in all existing
peer-to-peer systems, may be a centralized list of node ids, an anycast service,
or some other out-of-band mechanism. This discovery mechanism does not
need to maintain all of the node ids, but should maintain a signi�cant fraction
of them.

In addition to these assumption, we specify two requirements to ensure e�ec-
tive peer to peer communication despite malicious nodes. The �rst requirement
is secure, unique peer ids. A malicious peer may try to masquerade as an-
other peer, but this behavior should be detectable by \good" (non-malicious)
nodes. Peer authentication is vital to many operations in the PIPE network.
For example, it is vital that nodes accepting a copy of a document as part of
a publish operation be able to verify that the node sending the copy is in fact
the publisher and not some malicious node peddling a forgery.

There are several existing techniques that can be used to satisfy this require-
ment. One approach is to use an authentication authority to verify the identify
of peers. However, this authority could be a single point of failure or security
vulnerability. A more distributed approach is for a node to generate a public
key/private key pair. The public key would be the node id, while the private
key would be used to sign messages. However, if this private key needed to
be matched to a real-world id (e.g., mapping the id \42355" to \Stanford
University") a central authority may still be needed. One research problem
is to develop techniques that provide secure, unique peer ids with minimal
dependence on a central authority.

The second requirement, secure communications channels, ensures that
good, live nodes can communicate despite failures or attacks. This component
is vital as PIPE services require the cooperation of multiple nodes. By secure

we mean that a message from peer i to peer j 1) can be authenticated as
coming from i, 2) is unmodi�ed and 3) arrives or detectably fails to arrive at
j (so that i can resend). We do not require that messages be private (e.g.,
unreadable by third parties). Secure channels can be implemented by known,
reliable transmission protocols (such as secure HTTP) although these proto-
cols may require a public-key infrastructure. An alternative is to use dedicated

6



Fig. 1. A partially connected network.

physical channels, although many such channels may be necessary in a large
network.

Note that it may be diÆcult to satisfy the requirement of secure channels if
the network is partially connected ; that is, each peer only communicates with
a limited set of neighbors (Figure 1). In such a network, peers are expected to
forward messages in addition to responding to them. A malicious node may be
able to disrupt secure channels by refusing to forward messages. Therefore, for
now we must make another assumption: that the network is fully connected.
Research is necessary to develop techniques for secure communication channels
over partially connected networks.

3.2 PIPE operations

Now we can turn to our strawman implementation of PIPE operations. Our
implementation follows the basic outline of other replicated data management
systems: enough copies are made of data items so that at least one copy
survives failures, and the system must periodically detect and recover from
failures by making new copies. However, there are certain challenges that are
new in the PIPE domain. First, the replication must tolerate malicious nodes,
nodes that claim to be assisting in replication but instead may interfere with
the process. Also, queries locate documents by content, not by id. Content-
based searching means that a replicated catalog, mapping object ids to nodes,
is not suÆcient. Instead a searching mechanism is needed, and must toler-
ate malicious nodes. In this section, we will walk through the application of
replicated data management techniques to the PIPE system, and point out
new challenges raised by the need to implement secure content replication and
discovery. Then, in Section 4, we discuss possible new techniques to improve
the eÆciency of this strawman.

In a traditional replicated database system, the set of participating nodes is
relatively �xed and well known to the rest of the system. However, in a PIPE
network, nodes may join at any time, and it is diÆcult to predict which nodes
will comprise the system at any instant. Therefore, we must implement the
join operation to allow a good node to join the system securely by connecting
to other good nodes even if malicious nodes are in the network.

� join(): Discover k +m+ 1 nodes via the bootstrap mechanism. Contact at
least m+1 of them and ask for a list of nodes in the network. Contact each

7



of the nodes in the network and announce the new node's existence.

A new node i contacts other nodes to announce its existence, but may en-
counter k failed nodes before �nding a live node j. However, if node j is
malicious, it could return a list of either malicious nodes or invalid node ids,
so that i would not have a valid list of peers. If i contacts k +m + 1 sites, it
will at least get one list from a good, active node, although it may get up to
m lists from malicious sites. Since i does not know which is the good list, and
does not know which are invalid node ids (the nodes could simply be down
temporarily), node i unions all the lists to obtain its list of nodes.

Next, we must implement publish to guarantee that at least one copy of each
document is preserved at a good, live node, despite k failed nodes and m

malicious nodes.

� publish(D): Store k+m+1 copies of document D, each copy at a di�erent
peer (including the publisher i).

Malicious nodes may delete documents, refuse to serve documents, or serve
the wrong document, but there will still be a good document being served
somewhere.

Note that even though documents are replicated, this replication process
should respect any copyright restrictions on the documents. For example,
access can be restricted to authorized users via digital rights management
techniques or by publishing documents only to peers that have secured access.
However, the PIPE service should still preserve the bits, even if copyright re-
stricts access to them. A full treatment of copyright restrictions is both a legal
and technical discussion, and is outside the scope of this paper.

When a node has a failure, we need to take steps to make more copies of data
stored by the node, since that node may lose data or never rejoin the network.
To do this, we implement two additional operations:

� detect-failure(D; i): Probe node i to ask if it is live and has a copy of D.
� replicate(D): Make additional copies of D until there are at least k+m+1
copies at live nodes.

Because the original publisher may have failed, each node that has a copy
of document D should periodically perform detect-failure to probe all other
nodes holding a copy of D. The probe could be as simple as asking for a
checksum or CRC of the document. As soon as any node notices that another
peer has failed or a document is lost, it can use replicate to ensure that there
are still at least k +m+ 1 copies. Replicate is a lightweight operation, unlike
traditional database recovery mechanisms where complex transactions must
be undone or redone.

8



Unlike traditional systems, nodes using replicate must be careful about which
copy is chosen as the \good" document to replicate. If an altered or incor-
rect version is inadvertantly chosen, then malicious behavior will be enhanced
rather than mitigated. One approach is to de�ne the document id as a secure
hash of the content, for example using SHA1 or MD5. Then, a node should
recalculate the signature of a document to verify its authenticity before repli-
cating it.

A PIPE system can go beyond traditional detect and repair techniques to
also mitigate the situation where a document is stored at a live but malicious
node. However, detecting that a node is malicious is far harder than detecting
that the node has failed. For example, if node X is behaving badly (e.g.,
refusing to serve documents), that is easy to detect, since retrieve requests are
always refused. However, imagine a node Y that is waiting for the right time
to strike. For most of its lifetime, it acts \good," responding to requests and
serving documents. At some point Y may notice that there have been failures
in the network, and that it now holds the last copy of some document D. If
Y then deletes D, that document is lost forever. Such behavior is impossible
to predict beforehand.

Therefore, a key research question is to determine which malicious acts can be
detected. Undetectable maliciousness must be masked by extra redundancy,
so that even if a node becomes unexpectedly \evil" there are enough \good"
copies of documents so that the evil behavior is not detrimental. Research is
also needed to balance redundancy with the resource limitations of the system.

In addition, we can mitigate maliciousness by de�ning operations to detect
some of the more obvious malicious behaviors. For example:

� detect-has-copy : Choose a random portion of a document that a node is
supposed to be storing, and ask the node to return that portion. If the node
cannot, or the returned portion does not have the expected content, it has
destroyed the document and is therefore malicious.

Each node X should take the responsibility of probing remote nodes that store
copies of the same documents as X. If any detection operation indicates that
a node is acting in bad faith, then extra copies of documents held by the
malicious node can be made to better protect the document. The replicate

operation can be used for this purpose. The bad node can also be ostracized
from the system, although such punishment should be implemented carefully
to avoid attacks based on false accusation.

We must implement the search operation to ensure that digital documents
matching a content-based query q can be found.

� search(q): Broadcast the query q to all peers. Broadcast can be performed by

9



sending an identical search message to all peers. If a peer i has a document
matching the search, that peer returns the id D of the document as well as
i, its own id.

Because searches are by content, multiple documents may match the query,
and this implementation guarantees that results for any good, live matching
documents will be returned to the user. However, in addition to \correct"
search results, a malicious node may return bad results which must be �ltered
out by the searching node. Part of the diÆculty in this process is the ambi-
guity in distinguishing between \junk" and \real documents." For example,
imagine that a user wants to �nd the book \Origin of Species." There may be
multiple documents titled \Origin of Species," including the classic Darwin
book and also other books written by other people that are not necessarily
acting maliciously. Moreover, specifying more metadata (such as the author
or year) may not help. For example, a PhD thesis titled \Origin of Species
by Charles Darwin in 1859" will \legitimately" match even detailed searches.
In contrast, some documents are clearly \junk." If a malicious node rewrites
\Origin of Species" in order to deliberately deceive readers, then the altered
version is certainly junk.

An important research problem is to develop techniques for �ltering out this
junk. This is not an easy problem; how would a user that has never read \Ori-
gin of Species" know which document was real and which had been altered?
One possibility is for some authority (such as the Library of Congress) to
serve as a document authenticator. This solution unfortunately decreases the
robustness of the system, since the authority becomes a single point of failure.
Another potential technique is to use secure timestamps [16] to distinguish
between documents based on creation time. While secure timestamps can be
implemented in a distributed way, they may not o�er enough information to
properly �lter junk.

Finally, after a user has peformed a search she might decide to retrieve one
or more documents. We must securely implement retrieve to guarantee that
a good, live copy of any document published to the PIPE system can be
retrieved by the user.

� retrieve(D; i): A message containing the document id D is sent to the peer
i, and i returns a copy of the document. This process is repeated until an
authentic document is retrieved.

A malicious node may produce a fake or altered document in response to
a retrieve. To avoid this, it should be possible to verify that the retrieved
document matches the retrieve request. As with replicate, if a signature scheme
is used then the user can verify the document authenticity by recalculating the
signature. Since there should always be at least k+m+1 copies of documents,

10



eventually the user will retrieve a good live copy.

4 Improving the PIPE operations

The techniques of Section 3.2 are \brute-force;" they rely on broadcast and a
high degree of replication. A key research challenge is to develop techniques
that more eÆciently use resources such as bandwidth or storage while still
ensuring the basic preservation properties of the system. In this section we
propose starting points for developing techniques that meet the requirements
of both eÆciency and security.

4.1 Improving detection of malicious nodes

The detect-has-copy operation attempts to probe a site to see if it is operating
correctly. Although this probing may detect some malicious behaviors, others
may occur unnoticed. Moreover, probing requires many messages to be sent,
using up network bandwidth, even when no sites are malicious. If peers are
participating in the system because they want to derive bene�t from it, one
alternative is to use incentive-based veri�cation: nodes only derive bene�t from
the system if they behave correctly. Incentives may not prevent all malicious
actions, but can deter nodes that are merely sel�sh.

One example of incentive-based methods is to make nodes prove they are
storing documents that they have agreed to store in order to retrieve other
documents. Imagine that a node M is responsible for storing a copy of a
document D1. If M wants to retrieve another document D2 from another
node P , P could return D3 = D1 XOR D2 instead of D2. M could only read
D2 if it is properly storing D1, and thus has an incentive not to delete D1.
This scheme requires augmenting publish to distribute a list of who should
be storing what so that the correct test can be performed at retrieve time.
Unfortunately, this scheme only deals with a few of the potential malicious
acts, and only works if M and P store some of the same documents. More
research is necessary to develop this scheme to serve as the basis of a robust
incentive-based mechanism.

4.2 Improving search

Clearly, broadcast is an ineÆcient mechanism for implementing the search op-
eration. A better alternative is to employ indexing. Indexes can be constructed

11



over the data content or metadata, and then replicated in the PIPE network.
A node performing a search would only have to contact a few indexing nodes
to determine the location of a document or data set, rather than broadcasting
its query to the whole network.

However, the use of indexing introduces the possibility that indexing nodes
may be malicious. Therefore, there must be multiple copies (at least k+m+1)
of each index, just as there are multiple copies of documents. With enough
replication, malicious nodes would be unable to prevent a user from getting
valid search results, although malicious nodes may still return \junk" results.

As before, junk results can be �ltered by using secure timestamps or an au-
thority like the library of Congress. With more index replication, we can dis-
cover from the indexes themselves which are the correct results. If there are
k+m�2+1 indexes, then there will be at least m+1 good, live indexes, and
a peer performing a query would only accept search results that appear in at
least m + 1 indexes. This approach has the disadvantage that more indexes
must be queried for every search, but reduces the need to rely on timestamps
or an authority to discover good search results.

Indexes would be updated whenever a new document was published, or when-
ever a new copy was made with replicate. If an index is lost due to peer failure,
then another indexing node must perform an index replicate to make a new
copy of the index. It is not suÆcient to simply copy an index from a live node;
that node may be malicious and the index may be deliberately corrupted. As
with search, each index entry can be veri�ed using secure timestamps, a cen-
tral authority, or by querying all indexes and accepting entries that appear at
least m + 1 times.

After indexes are built, their location must be made known to other peers, so
that those peers can conduct searches. The simplest mechanism is that a node
noti�es the network, using broadcast, that it has an index. This reduces the
use of broadcast to a one-time setup message.

5 Related work

Replication to protect against failures has been employed in several systems,
such as RAID [20], mirrored disks [3], replicated �le systems [10], and so on.
In most of these systems, all of the replicas are under the control of a central
authority, and thus issues dealing with autonomy and maliciousness are less
relevant.

A variety of techniques have been investigated for protecting against malicious

12



activities in a distributed system. One class of techniques are based on cryp-
tography, including secret key [1], public key [8] and cryptographic hashing [2]
mechanisms. If nodes fail and lose their keys, key escrow techniques [7] can
be used to recover. However, many protocols based on cryptography assume
a central authority or set of authorities, for example to issue certi�cates. This
assumption may not be appropriate in a distributed, autonomous system, es-
pecially if the authority itself may fail. Moreover, encryption only deals with
some of the problems we examine (e.g., authentication) and not others (e.g.,
guaranteeing that a node storing a document will serve it). Another class
of techniques seek to specify security in a declarative way. Systems such as
PoET [21] can be used to enforce access control over digital objects, but do
not address the problem of ensuring an object is stored and served.

Much recent research has focused on peer-to-peer systems. Several systems
have been developed, including academic projects such as Chord [11] and
Pastry [23] and industrial systems such as as Limewire and Kazaa. Much
of this work has been focused on eÆcient and scalable search (as in Chord)
or on publisher and searcher anonymity (as in FreeHaven [9]), rather than
on the malicious behaviors we examine here. Peer-to-peer systems such as
LOCKSS [22] and Archival Intermemory [13] deal with malicious nodes by
depending on lots of extra copies, similar to what we propose in our basic
techniques. Our PIPE system builds on these earlier systems by integrating
search and publishing into one fault-tolerant, secure system.

6 Conclusion

Peer-to-Peer Information Preservation and Exchange (PIPE) networks are the
central component of a robust, community-based digital library. In this paper
we have outlined the PIPE service, including the operations it provides, the
peer-to-peer architecture of cooperating nodes, and the properties (such as
document preservation) it aims to achieve. We have also sketched how the
system could be deployed to handle failures and malicious activities.

Examining the possible attacks, it is clear that digital libraries are quite vul-
nerable to malicious attacks. One could say that they are signi�cantly more
vulnerable than conventional libraries, where it is often easier to control who
comes in contact with the library materials. In the digital world, any teenager
with a PC can try to impersonate library servers, can inject into the system
fake and altered documents, or can mount denial-of-service attacks.

We have also seen that protecting against malicious attacks is inherently costly.
For every possible malicious site, we need to make extra copies of our docu-
ments. Every time we handle information, we have to be cautious: where did

13



it come from? do several sites agree with this? when was this actually created?
Even though there are potential optimizations, the bottom line is that it is
still very expensive to protect against malicious users, a fact we may just have
to live with.

Given the high cost of the mechanisms we have presented, it is clear that
much research must be done to develop more eÆcient techniques. For example,
it may be tempting to consider another class of \probabilistic" mechanisms.
Instead of making a �xed number of copies of a document (e.g., k+m+1), sites
would simply strive to make \lots" of copies of all documents. For example, a
site may cache copies of say a random 5% of the documents it sees from other
sites. The hypothesis is that, since each document has many copies, and no
one knows exactly where they are, most documents will be protected. Such
an approach requires additional study, but in the end we suspect that many
more copies of documents will be needed, and that there will be a danger that
some documents (perhaps the less popular ones) will be lost.

References

[1] FIPS PUB 197. Advanced encryption standard, 2001. Federal Information

Processing Standards Publication, U.S. Department of Commerce, National

Bureau of Standards, Spring�eld (Virginia).

[2] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk. Cryptographic hash functions:

A survey, July 1995. Technical Report 95-09, Department of Computer Science,

University of Wollongong.

[3] A. Borr. Transaction monitoring in Encompass [TM]: Reliable distributed

transaction processing. In Proc. 7th VLDB, Sept. 1981.

[4] M. Castro and B. Liskov. Practical byzantine fault tolerance. In OSDI:

Symposium on Operating Systems Design and Implementation, 1999.

[5] B. Cooper, A. Crespo, and H. Garcia-Molina. Implementing a reliable digital

object archive. In Proc. European Conf. on Digital Libraries (ECDL), 2000.

[6] B. Cooper and H. Garcia-Molina. Creating trading networks of digital archives.

In ACM/IEEE Joint Conference on Digital Libraries, Roanoke, VA, June 2001,

pages 353{362, 2001.

[7] D.E. Denning and D.K. Branstad. A taxonomy for key escrow encryption

systems. Communications of the ACM, 39(3):34{40, 1996.

[8] W. DiÆe. The �rst ten years in public key cryptography. Proc. of the IEEE,

76(5):560{577, 1988.

[9] R. Dingledine, M.J. Freedman, and D. Molnar. The free haven project:

Distributed anonymous storage service. In Workshop on Design Issues in

Anonymity and Unobservability, pages 67{95, 2000.

14



[10] B. Liskov et al. Replication in the Harp �le system. In Proc. 13th SOSP, Oct.

1991.

[11] I. Stoica et al. Chord: A scalable peer-to-peer lookup service for internet

applications. In Proceedings of SIGCOMM, 2001.

[12] John Kubiatowicz et al. OceanStore: An architecture for global-scale persistent

storage. In Proc. ASPLOS, Nov. 2000.

[13] Y. Chen et al. A prototype implementation of archival intermemory. In Proc.

of the ACM Conf. on Digital Libraries, 1999.

[14] S. Kamvar, M.T. Schlosser, and H. Garcia-Molina. The EigenTrust algorithm

for reputation management in P2P networks. In Proc. WWW Conference, 2003.

[15] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM

Transactions on Programming Languages and Systems, Vol.4, No.3, pp. 382-

401, July 1982.

[16] P. Maniatis and M. Baker. Secure history preservation through timeline

entanglement. In Proc. of the 11th USENIX Security Symposium, Aug. 2002.

[17] Sergio Marti and Hector Garcia-Molina. Identity crisis: Anonymity vs.

reputation in p2p systems. In 3rd International Conference on Peer-to-Peer

Computing (P2P 2002), 2003.

[18] C. Mohan, R. Strong, and S. Finkelstein. Methods for distributed transaction

commit and recovery using byzantine agreement within clusters of processors.

In Proceedings of the Sixth ACM Symposium on Principles of Distributed

Computing, 1987.

[19] D. Moore, G. Voelker, and S. Savage. Inferring internet denial of service activity.

In Proc. of 2001 USENIX Security Symposium, August 2001.

[20] D. Patterson, G. Gibson, and R. H. Katz. A case for redundant arrays of

inexpensive disks (RAID). SIGMOD Record, 17(3):109{116, September 1988.

[21] S. Payette and C. Lagoze. Policy-carrying, policy-enforcing digital objects. In

Proc. European Conf. on Digital Libraries (ECDL), 2000.

[22] V. Reich and D. Rosenthal. Lockss (lots of copies keep stu� safe). Preservation

2000, Nov. 2000.

[23] A. Rowstron, P. Druschel, and P. Scalable. Distributed object location and

routing for largescale peer-to-peer systems. In Proc. IFIP/ACM Middleware

2001, Heidelberg, Germany, November 2001.

15


