
Titan: A Carrier-based Approach for Detecting and
Mitigating Mobile Malware

Arati Baliga∗

Polytechnic Institute of NYU
Jeffrey Bickford

AT&T Security Research Center
Neil Daswani†

Twitter Inc.

ABSTRACT

The ubiquity of mobile devices and their evolution as com-

puting platforms has made them lucrative targets for mal-

ware. Malware, such as spyware, trojans, rootkits and bot-

nets that have traditionally plagued PCs are now increasingly

targeting mobile devices and are also referred to as mobile

malware. Cybercriminal attacks have used mobile malware

trojans to steal and transmit users’ personal information, in-

cluding financial credentials, to bot master servers as well

as abuse the capabilities of the device (e.g., send premium

SMS messages) to generate fraudulent revenue streams.

In this paper, we describe Titan, a new, network-based ar-

chitecture, and a prototype implementation of it, for detect-

ing and mitigating mobile malware. Our implementation of

Titan for both Android and Linux environments was built in

our 3G UMTS lab network, and was found to efficiently de-

tect and neutralize mobile malware when tested using real

malware samples from the wild. Titan employs a defense-

in-depth approach and features: 1) in-the-network malware

detectors to identify and prevent the spread of malware and

2) a server-side mitigation engine that sends threat profiles

to an on-the-phone trusted software component to neutralize

and perform fine-grained remediation of malware on mobile

devices.

1. INTRODUCTION

Mobile devices have become an integral part of our

daily lives; we rely on them to send and receive email,

communicate with family and friends, perform finan-

cial transactions, and much more. Due to the inherent

trust users place in these devices, as well as the avail-

ability and frequent download of hundreds of thousands

of apps, it is no coincidence that mobile devices are

∗This work was conducted while A. Baliga was with the
AT&T Security Research Center.
†N. Daswani conducted this research while employed at
Dasient. Twitter acquired Dasient in January 2012.

c© 2013 AT&T Intellectual Property. All rights reserved.

now targets of complex malware attacks. According to

a threat report by F-Secure Labs, 5,033 malicious An-

droid applications were discovered in the second quar-

ter of 2012, a 64% increase compared to the previous

quarter, including the first Android malware to use a

drive-by-download vector for infection [6].

From a mobility network provider point of view, the

mobile malware threat not only impacts its individual

customers, but also impacts the security and reliabil-

ity of the mobility network as a whole. Researchers

have shown the feasibility of denying mobility network

services using specially targeted SMS messages, con-

trol channel vulnerabilities, and mobile botnets [28, 42,

51]. In fact, in the recent outbreak of SpamSoldier [14],

attackers formed a botnet of SMS spammers, making

what was once a research problem now a reality. As

with many other security problems, the problem of mo-

bile malware needs to be addressed holistically via a

defense-in-depth approach that includes prevention, de-

tection, containment, and recovery techniques. Various

solutions have been proposed to tackle the increasing

number of mobile threats, though from the perspective

of a network provider, no optimal solution exists today.

Many app stores are beginning to use security APIs

to scan apps before they list them [9] [1]. While this

will limit some malicious apps from being downloaded

by the user, mobile malware can be delivered via other

attack vectors, such as visiting infected websites (drive-

by-downloads), downloading apps from unsafe app stores,

spam email or SMS/MMS, or simply downloading un-

safe content from unrated or malicious web sites. Re-

cent work has also shown the feasibility of subverting

the app store review process, thereby compromising the

integrity of the app store itself [47, 8]. Though most

companies provide mobile variants of their signature-

based anti-virus software; these schemes typically re-

quire an exhaustive set of signatures and can be easily

thwarted by malware that use techniques such as en-

cryption and packing [24, 34]. In fact, Google’s own

1

RNC

RNC

Node B

Node B

Node B

ME 1

ME 2

SGSN

VLR

MSC

GGSN

HLR

CGF

Visiting Network Home NetworkMobile Devices

SMSC

Figure 1: 3G UMTS Network Architecture

App Verification Service, introduced in Android 4.2,

only detects 15% of 1,200 malware samples previously

released to the public [36]. Alternatively, host-based

behavioral detection engines, which can detect these so-

phisticated threats, are simply infeasible to deploy on

current mobile devices due to their heavy resource re-

quirements and limited energy constraints [46, 20].

To protect both their customers and network infras-

tructure, network providers frequently deploy network-

based anomaly detectors capable of detecting malicious

traffic patterns, such as botnet communication patterns,

worm traffic, and DDoS attacks [40]. Within the mobil-

ity network, these same security services exist, though

they are expanded to include mobility specific attacks,

such as SMS spamming campaigns and premium num-

ber fraud. Traffic characteristics and malicious payloads

are typically analyzed using in-house analysis environ-

ments and third-party cloud services without resource

constraints. Traffic characteristics from millions of users

are analyzed every day, giving a network provider vis-

ibility into a large set of attacks. However, when the

network detects a misbehaving device and determines

that its activity is harmful to both other customers and

the network, the only current possible mitigation strat-

egy is deactivating the device, resulting in dissatisfied

customers and calls to customer service.

In this paper, we describe Titan, a new, network-

based architecture and a prototype implementation of

it for detecting and mitigating mobile malware. Titan

combines the strength of network-based detection with

the abilities of a trusted device component to identify

the malicious app and mitigate the infection. Titan em-

ploys a defense-in-depth approach where in-the-network

malware detectors communicate network threats to an

on-the-phone trusted software component to identify

and neutralize malware on the device. Combining net-

work based detection with the ability to identify mal-

ware on the device allows Titan to provide protection

against threats even in the absence of an anti-virus sig-

nature, provide faster response to ongoing threats, op-

erate at lower costs, and leads to a minimal increase in

battery consumption on the end device.

The contributions of this work are as follows:

• The Titan architecture detects and renders malware

ineffective. Titan derives its effectiveness by placing

network level components that detect and communicate

threat profiles to a trusted software component running

on the device that can identify and mitigate malware.

• A prototype implementation of Titan that we built in

our 3G UMTS lab, and discuss some of the real-world

trade-offs that we encountered in building it.

The remainder of the paper is organized as follows. In

Section 2, we provide a quick primer of the 3G mobility

network to provide the reader an understanding of how

Titan fits in. In Section 3, we describe our defense-in-

depth approach including Titan’s design and implemen-

tation. We present our experimental results in Section

4. We address counter attacks, scalability and limita-

tions in Section 5. Related work is covered in Section 6

and we finally conclude in Section 7.

2. BACKGROUND

This section describes the basic elements involved in

the 3G UMTS network [16]. We use this type of net-

work to design, develop and test our architecture. The

architecture that we propose is generic enough and can

be deployed with other types of 3G networks as well as

4G LTE networks.

2.1 3G UMTS Network Primer

Figure 1 shows the basic components of a UMTS net-

2

Mitigation

Engine (MiE)
Database

GGSN

Network Malware Detector

(NMD)

Internet

Smart phone

Viliv S5

Tablet

Data traffic

Trusted Host

Component (THC)

Mobility Network Mobile Devices

Packet

Inspector (PI)

Filter

Specialized Cloud-based

Malware Detector

SMS Malware Detector SMSC SMS traffic

Figure 2: Mobile malware mitigation architecture

work. In a UMTS network, a mobile device connects to

the network via a radio link to the nearest base station,

also referred to as the Node B. Multiple base stations are

connected to a Radio Network Controller (RNC). For

access to the circuit switched services, such as phone

calls and SMS messages, multiple RNCs are connected

to a Mobile Switching Center (MSC). SMS messages

are sent to the nearest SMS Center (SMSC) from the

MSC over the control channel. For access to the data

services, multiple RNCs are connected to the Serving

GPRS Support Node (SGSN). The MSC, SGSN and the

Visitor Location Register (VLR) track devices that are

connected to the network that they are visiting. Every

subscriber in the UMTS network is identified with an In-

ternational Mobile Subscriber Identity (IMSI) number.

Every device is identified with an International Mobile

Equipment Identity (IMEI) number. Every subscriber

also has a home network that stores the subscriber pro-

file in the Home Location Register (HLR), including

the IMSI and the IMEI numbers. Mutual authenti-

cation between a mobile device and a visited network

is carried out with the support of the serving SGSN

or the MSC/VLR. The Gateway GPRS Support Node

(GGSN) acts as an anchor for all data traffic originating

from the mobile device irrespective of its location. For

simplicity and clarity, we have only described elements

that are sufficient for basic understanding of the UMTS

network. The GGSN is the component that our archi-

tecture interfaces with within the UMTS network and

therefore is described in more detail below.

2.2 Gateway GPRS Support Node (GGSN)

The GGSN is a node that acts as a gateway between

the mobility network and the Internet. The mobile de-

vice connects to the local SGSN, which in turn builds a

tunnel to the GGSN using the GPRS Tunneling Proto-

col (GTP). When the device moves to a different loca-

tion, it switches SGSNs while the GGSN serves as the

anchor point of the tunnel that routes data traffic to the

Internet. The GGSN covers a very large part of the mo-

bility network for data services as it resides within the

user’s home network. This placement allows the GGSN

to serve as a central point of observation for data traffic

and therefore is ideal for placement of network based

malware detectors.

The GGSN assigns an IP address to every single out-

going data connection originating from the mobile de-

vice. This IP address is randomly picked from a pool

of IP addresses owned by the GGSN. Therefore, a sin-

gle IP address from this pool might represent different

mobile devices within the same mobility network at dif-

ferent points in time. Alternatively, different IP ad-

dresses might correspond to the same device at differ-

ent time instances. The GGSN contains all information

about user’s data usage. It feeds this information into

a Charging Gateway Function (CGF). The CGF ac-

counts for data usage and generates billing information

based on the usage and the type of data plan subscrip-

tion. The GGSN naturally acts like a Network Address

Translation (NAT) device and has information to corre-

late the IP address assigned to the device to its identity

at any given point in time. This structure of the mobil-

ity network provides the following advantages that we

leverage.

• Centralized view of data traffic: The GGSN acts

as a gateway to the data traffic and has visibility into

data generated by all the mobile devices that it serves.

This centralized view enables detection of large scale

attacks, such as command and control traffic originating

from mobile botnets and fast spreading worms.

3

• Mapping IP to the device identity: When a new

mobile device initiates a data connection, the GGSN

creates a Packet Data Protocol (PDP) context for the

device. The PDP context is maintained at both ends of

the GTP tunnel between the SGSN and the GGSN. It

contains all information about the device that has re-

quested the data service including its IMSI/IMEI num-

bers. The GGSN picks a free IP address from its pool

and assigns it to the new PDP context. Because the

GGSN maintains this information, at any given point

in time, it is able to identify the device with the given

IP address. The architecture we propose utilizes this

mapping to accurately identify infected devices sending

out malicious traffic.

3. DESIGN AND IMPLEMENTATION

Titan employs a defense-in-depth approach in com-

bating mobile malware, which broadly comprises of the

following steps.

• Infection prevention: Titan is able to prevent in-

fections by blocking mobile devices from either visiting

or downloading known “bad” apps and content. It can

push infection information of new and ongoing threats

to non-infected devices, which will prevent malware from

running on these devices altogether.

• Effective detection: Mobile devices are heavily net-

work centric as most content is delivered from the Inter-

net via apps or websites. Titan places malware detec-

tors within the mobility network and monitors for signs

of infection. It also interfaces with third-party cloud

services for specialized offline analysis of apps and con-

tent, which it uses for detection and prevention.

• Immediate containment: Titan employs a trusted

component on the mobile device that receives threat

profiles from the network. Threat profiles character-

ize the traffic that was flagged by the network as ma-

licious. The trusted component can identify the appli-

cation that generated the malicious traffic and immedi-

ately stop it from executing. It can also notify the user

and remove the application from the device once it has

been neutralized.

• Fine grained response: Titan’s fine-grained re-

sponse of only containing malware without hampering

execution of other legitimate applications, allows the

user safe continued access to his device.

3.1 Architecture

Figure 2 shows the end-to-end architecture of Titan

and how it interfaces with the GGSN within the 3G

UMTS network. Titan places several new components

within the mobility network - the Mitigation Engine

(MiE), the Network Malware Detector (NMD), the Fil-

ter, the Packet Inspector (PI) and the database. It also

places a Trusted Host Component (THC) on the mobile

device itself to assist with containment.

As explained in Section 2.2, mobile devices send data

traffic to the Internet via the GGSN. When a mobile de-

vice attaches to the network, it establishes a new PDP

context and is assigned an IP address from a pool owned

by the GGSN. We instrument the GGSN to log the IP

address assigned to the device and its IMSI/IMEI num-

bers into the database. It also logs the time duration

for which the current IP belonged to the specific device,

i.e. the duration of the PDP context. This information

is required to map the IP address assigned to the device

with its device identity (IMSI/IMEI).

The PI sniffs the Internet facing interface of the GGSN

and logs all network data flows, originating from and to

the mobile devices, into the database. It also logs in-

formation from some application level protocols, such

as HTTP and DNS. The NMD operates on logged net-

work flows and detects malicious traffic patterns e.g.,

the NMD might find a mobile device conducting an IP

scan or a port scan, or sending traffic to blacklisted com-

mand and control servers. Since the NMD has a large

scale view of the mobility network, it is well placed to

detect spread of worms or other types of large scale

attacks, such as DDoS or botnet command and con-

trol communication patterns. It is also well-placed to

detect other kinds of application level accesses, such

as access to malicious websites or malicious app down-

loads. Along with traditional network-based detectors,

the NMD can also rely on external cloud-based services

for specialized analysis, e.g., analysis of specific URLs

for drive-by-downloads or conducting behavioral analy-

sis of an app that was accessed by the end mobile de-

vice. Analysis results from cloud services are used as

network signatures for detection both in the NMD and

the Filter. The Filter component blocks future access

from mobile devices to websites or apps that are iden-

tified as malicious. The MiE uses the alert information

generated by the NMD to generate a threat profile and

communicates the threat profile to the THC on the end

mobile device. The mobile device identifies the appli-

cation that is infected and immediately stops it from

executing on the device.

Below, we explain in detail the role of each of the

components of Titan and how they communicate with

each other to effectively combat mobile malware.

4

Virtual Machine Monitor (VMM)

Trusted

Component

Privileged VM User VM

App 1
Malicious

App

App 1
App 1

Kernel

User space

Trusted Component

App 1
Malicious

App

App 1
App 1

(a) Trusted component in the privileged VM (b) Trusted component inside the operating system.

Figure 3: Mobile device architecture and placement of the trusted component

3.1.1 Trusted Host Component (THC)

Titan places the THC on the mobile device in two dif-

ferent ways; primarily based on whether the underlying

platform supports virtualization.

Figure 3(a) shows a THC on the device that supports

virtualization. On a virtualized platform, the THC runs

as an application inside a privileged virtual machine

(VM) and all other user applications run inside a User

VM. Placing the THC in this fashion allows us to lever-

age certain well-known security properties of the virtual

machine architectures [29, 27]. By placing the THC in

the privileged VM, it is effectively isolated from other

applications running on the device yet is able to inspect

on the state of the applications and the operating sys-

tem running inside the User VM. This architecture can

protect against malware that resides in user, as well as

kernel, space inside the User VM.

Figure 3(b) shows the THC running inside the oper-

ating system kernel for platforms that do not support

virtualization, which is the case with current commer-

cial mobile phones. We use this architecture on smart

phones where the THC runs inside the kernel. By run-

ning in kernel space, the THC is able to intercept system

calls from user space applications and inspect applica-

tion state. However, this model has the limitation that

it is unable to detect or defend against attacks that com-

promise the kernel, e.g., kernel-level rootkits. While us-

ing this architecture, we assume that the threat to the

device is only in user space.

In both cases, the THC listens for connections from

the MiE on a special TCP port. It also maintains a

rolling log of network connections both incoming and

outgoing generated by user applications running on the

device. This log maps each network flow to the appli-

cation that generated the flow or is the recipient of the

flow. When the network identifies that a device is in-

fected with malware, it receives infection information

from the MiE about the network flows that were found

to be malicious. The THC refers to its log to find the

application that generated the malicious flow.

3.1.2 Packet Inspector (PI)

The PI component sniffs the outgoing physical inter-

face of the GGSN, also known as the Gi interface. It

logs into the database, all bidirectional network flows

from the mobile devices. Network flows comprise of

source and destination IP addresses, source and des-

tination ports and the protocol used. The PI also logs

some relevant information from certain application level

protocols of interest, such as domain names for DNS

and URLs for HTTP. DNS information allows the NMD

to identify applications trying to contact malicious do-

mains. Logging HTTP URLs helps identify access to

malicious websites from mobile devices.

3.1.3 Network Malware Detector (NMD)

The NMD operates on logged network flows and iden-

tifies malicious network traffic. The NMD is designed

with extensibility in mind and can leverage any number

of well known tools or techniques to identify malicious

traffic patterns [2, 15, 32, 33, 31, 52, 41, 53, 23]. In

order to improve Titan’s effectiveness over time, future

network-based detection algorithms can be easily incor-

porated into the NMD. At the IP/TCP/UDP layer, the

detector might find a device scanning other IP addresses

or ports. A high scan rate indicates a worm trying to

spread to new devices, such as the iKee.B worm which

targeted jailbroken iPhones [49]. Often port scans look

5

for specific open ports running services with vulnera-

bilities. Other types of network layer detection might

involve using the amount of data or connections to de-

tect Denial of Service (DoS) attempts, including DoS

attempts on the mobility network itself [42]. The NMD

can also maintain an IP blacklist, obtained from 3rd

party sources, network based detection algorithms and

internal observations, to identify malicious connections

from devices to such servers. This often indicates infec-

tion, e.g., a bot trying to connect to its command and

control server or a malicious application that tries to

send stolen information back to the attack server.

Apart from detection at the network layer, detection

can be incorporated by scanning headers of higher level

protocols contained within the network traffic, such as

DNS. With DNS information, the network detector can

identify malicious connections to blacklisted domains.

In addition to scanning higher level protocol headers,

the detector can also perform deep packet inspection

on suspicious traffic to match for known malware sig-

natures. This approach can be used selectively as it

increases the storage load on the server significantly.

The NMD logs all alerts into the database. The alert

contains the IP address of the device and the time at

which the flow was recorded to be malicious.

Specialized detectors. Network providers typically

rely on specialized detectors for certain services that are

outside their area of expertise. In Titan, the NMD em-

ploys specialized cloud-based detectors for a more com-

prehensive, time-consuming analysis of unknown URLs

and apps seen in the network. When a user downloads

an unknown app or visits an unknown URL, the Filter

optimistically grants access to the resource, while ini-

tiating a URL/app scanning request to the cloud ser-

vice in parallel. Though some simple, signature-based

checks can be done to determine if an application or

URL is already previously known to be malicious, scan-

ning applications and URLs for previously unknown

threats using dynamic or behavioral analysis can de-

tect malware variants for which no signature exists yet.

Analysis results returned by the cloud service are fed

back into the NMD to enhance its algorithms and to

prevent future accesses to the malicious URLs/apps. If

a device gets infected before the results are received,

an alert is generated by the NMD, and the mitigation

steps to contain the effects of the malware are executed

by the MiE and THC working together in tandem.

SMS Malware Detector. If the cloud-based anal-

ysis reports malware sending premium SMS messages or

messages that have been previously identified as spam [3],

the message or premium number is added to an SMS

blacklist within our database. The SMS Malware De-

tector, running on the SMSC has access to this database

and can match all outgoing SMS messages with this

blacklist and generate an SMS alert.

3.1.4 Filter

The Filter component blocks access to malicious con-

tent/connections e.g., it can check for future accesses

to URLs or apps that are flagged as malicious. In such

a case, the Filter component drops the request and re-

turns a stub page to the user, which informs him of the

website being malicious. The Filter component can also

filter generic netflows identified as malicious, such as

communication with blacklisted IPs or domain names.

3.1.5 Mitigation Engine (MiE)

The MiE processes the alerts generated by the NMD.

An alert contains the IP address of the infected device

and the time at which the alert was generated for the

given network flow. The MiE has to first identify the

correct device based on this information as the device

might have disconnected from the network or might

have acquired a new IP address. The MiE first ob-

tains the IMSI/IMEI of the device that the IP address

belonged to at the time the alert was generated. This

information can be obtained by correlating the time for

which the PDP context was valid and had the afore-

mentioned IP address. From the IMSI/IMEI number,

it checks if the device is connected to the network and

has a valid PDP context. It obtains the new IP address

of the device in this case and makes a connection to the

THC on the device. If the device is offline, this alert is

ignored and processed later when the device connects

back to the network.

With the valid IP address, the MiE connects to the

THC on a special TCP port. The THC listens on this

special port for commands from the MiE and receives

threat profiles in order to identify malicious apps.

3.2 Network-Device Communication

When a device is uninfected, the network passively

scans for signs of malicious traffic generated by the de-

vice. Communication is initiated by the MiE, only when

signs of infection are found via the NMD. In all cases,

the MiE initiates the connection to the THC on the de-

vice. We assume that the MiE and the THC have a

unique preshared key that they use for secure commu-

nication. The preshared key can be securely stored on

the device and distributed along with the THC.

6

3.2.1 Threat profile communication

The MiE identifies the infected device in response to

an alert generated by the network detector or as a re-

sult of offline analysis. For example, the NMD might

have identified that the device is infected because it

found the device initiating an HTTP connection to a

bot controller. After establishing a secure channel with

the THC on the device, the MiE sends a threat profile

to it. Fig. 4 shows an example threat profile generated

by the MiE for a device infected with the DroidDream

malware [7]. In this case, the network identifies a de-

vice which has contacted a blacklisted IP of the botnet

command and control server. The profile includes the

details of the malicious flow as identified by the net-

work, which includes the source and destination IP and

port pairs, the protocol and the time the connection was

made. This profile also commands the THC to termi-

nate the application that generated the malicious flow.

The host component also maintains a log of network

connections from the device. This log comprises of the

eight tuple <Source IP, Dest IP, Source Port, Dest Port, Protocol,

Application, Start Time, End Time>. Compared to the net-

work, the host component additionally stores the ap-

plication identity that is sending/receiving packets. By

matching the tuples with the threat profile, the host

component is able to find the application that gener-

ated the malicious flow.

The MiE responds with possible remediation actions

to be performed depending on the severity of the threat.

If the flow, identified by the network, is not found in the

log, the THC stores this information in a watch list and

<threat>

<de s c r i p t i on>

B la ck l i s t e d IP Connection

</de s c r i p t i on>

<p r o f i l e >

<f low>

<s ip >172.16.23.68</ s ip>

<sport >42965</sport>

<dip >184.105.245.17</ dip>

<dport>8080</dport>

<protoco l>TCP</protoco l>

<time>2011−08−01 15:52:35</ time>

</flow>

</p r o f i l e >

<mit i ga t i on ac t i on=”k i l l a p p ”/>

</threat>

Figure 4: Threat profile for the DroidDream app

connecting the botnet server

looks for future matching packets that might be sent

from the device. For example, if a bot on the device

initiated HTTP connections to its controlling server,

this event is likely to repeat within the near future and

will be detected at that point in time.

3.2.2 Mitigation Actions

Mitigation actions can be explicitly requested by the

MiE or performed by the host component after receiv-

ing infection information. In both cases, the mitigation

actions effect only the malware program running on the

device without hampering the user from using other ap-

plications or functionality. In some cases, where the net-

work has enough information about an ongoing threat,

it can request the THC to perform prevention in order

to contain the threat. For example, if Titan has identi-

fied both the network activity and application of a fast

spreading worm, it might preemptively share this threat

profile with other devices before they are infected, thus

preventing infection.

Android smart phones today allow Google to remotely

send commands to either install or remove applications

from their smart phones via their GTalk service. Google

has been using this feature to revoke applications found

to be malicious or violating their Android market de-

veloper distribution agreement or content policy [13,

5]. Our architecture on the other hand allows the mo-

bility carrier to invoke such functionality on all types

of heterogeneous devices that are allowed to connect to

its mobility network, upon discovering that those de-

vices are infected. As opposed to the kill switch that

Google can invoke to remove applications only down-

loaded from the Android market [5], Titan can protect

end users from malicious apps that might have been in-

stalled from other alternative app stores, malware that

gets installed as a result of a drive by download, mal-

ware that installs with the user permission as a result

of email or SMS/MMS spam or other types of malicious

attacks, such as worms, etc.

3.3 Implementation

We have a fully operational 3G UMTS instance that

implements the Titan architecture. Below, we describe

the implementation details of prototyping Titan within

our 3G UMTS lab network.

3.3.1 Network components

We use the OpenGGSN software running on a Linux

server as the GGSN node [12]. The OpenGGSN node

interfaces with the SGSN within our 3G wireless lab.

7

We modified OpenGGSN to log information about PDP

contexts assigned to the mobile devices within the mo-

bility network into a MySQL database that runs on the

same server. This information consists of the device

identity, i.e. the IMSI/IMEI numbers and its corre-

sponding IP address for a valid PDP context time du-

ration. The PI, NMD, MiE and the Filter are all ap-

plications that run on the same Linux server and can

query the MySQL database.

3.3.2 Trusted component on Android

On Android, the THC runs within the Android ker-

nel, implemented as a kernel module as shown in Fig.

3(b). We use this architecture to demonstrate the im-

plementation on smart phones as they exist today. Be-

cause the THC runs within the kernel, it can only pro-

vide complete protection against attacks that operate

in user space, which is largely the case for smart phone

malware today. This implementation does not take into

account attacks that already have obtained kernel level

control, such as kernel-level rootkits. We defer discus-

sion about how malware might subvert the host com-

ponent if it obtains kernel level control and our coun-

termeasures against such attacks to Section 5.1.

The THC obtains information about Android appli-

cations by intercepting system calls. It intercepts all

socket related calls to create a log of all TCP and UDP

traffic that originates from Android applications. It

buffers and logs network activity within a small rolling

log. This log is comprised of the network end point in-

formation, such as source and destination IP addresses

and port numbers, the application that generated or

received the traffic and the start and end times of the

network flow. The application name that sends traffic

on a specific socket is obtained by internally walking the

various kernel data structures. A significant amount of

malware on Android also generates malicious SMS mes-

sages. To keep track of SMS messages, the THC also

intercepts all writes to the modem file descriptor and

looks for AT commands. By using this technique, it also

logs all SMS messages that are generated by Android

applications.

To receive threat profiles from the network MiE, the

THC runs a TCP server within kernel space as a kernel

thread. This thread listens to commands from the net-

work component and can decode the threat profiles that

it receives. Upon receiving a threat profile, it decodes

the malicious flow, refers to its log to find the applica-

tion that generated the flow and kills the application

by posting a kill signal to the appropriate process. The

application is further blacklisted and prevented from

running on the device thereafter.

3.3.3 Trusted component on Xen/Linux

Current mobile virtualization solutions are limited in

their availability and cannot be installed on any com-

mercially available devices today. To demonstrate how

Titan works with virtualizable platforms, which are ex-

pected to be available on smart phones in the near fu-

ture [11, 17, 35], we built our prototype on the Viliv

S5 mobile device due to its functional equivalence of

a smart phone. The Viliv S5 is equipped with an In-

tel Atom Z520 1.33 GHz processor and runs the Xen

VMM [27] to achieve isolation between the user VM and

the THC executing within a privileged VM, both run-

ning the Linux operating system as shown in Fig. 3(a).

The THC inside the privileged VM must identify net-

work activity generated by the user VM and identify

the application that generated this traffic. By using a

hypervisor-based system, the THC can remain isolated

and secure even if the user VM’s kernel is compromised

by malware. Because we assume the kernel in the user

VM can be compromised, the THC does not rely on any

information within the user VM kernel and therefore

must bridge the semantic gap between the hypervisor

and the user VM.

In the hypervisor, we add functionality for intercept-

ing and forwarding process and networking related sys-

tem calls to the THC in the privileged VM. We use a

technique published in [19], to pass all system calls to

the hypervisor. Relevant system calls are forwarded to

the THC via shared memory pages, which are accessible

to both the hypervisor and the THC. The THC waits

on a Xen event channel in order to be notified when new

information arrives on the shared pages. Below, we de-

scribe how this implementation tracks applications run-

ning on the system and how it accounts for the network

traffic that they generate.

Process tracking. In Linux, processes are executed

using the execve system call. The execve system call

takes an argument, which is the full path name of the

application to be executed. The THC obtains the name

of the application executing by using this information

from the hypervisor. To identify the process currently

running, without relying on the kernel data structures

of the user VM, we rely on the characteristics of the x86

memory management system.

In the x86 architecture, each process is separated

within its own virtual address space using multi-level

pages tables. Each address space is indexed by a high

8

level page directory table, which is stored in the process

control register (CR3) during process execution and can

be used to uniquely identify a process [39, 18]. When a

process is created using the the execve system call, we

capture the address of the page directory and pass the

address on to the THC. This gives us a mapping be-

tween a binary name and the current process running,

identified by the CR3 value.

Network activity tracking. When an application

generates network activity, it makes a sequence socket-

call system calls. We trace various socket calls, such

as connect and sendto, and pass their arguments to

the THC in order to log network activity of the user

VM. Since these system calls occur within the context

of the currently executing process, the CR3 register is

also passed to the THC in order to identify the applica-

tion which caused this network activity. This generates

a mapping between the application and the network ac-

tivity that it is involved in.

Mitigation. Because killing a process relies on var-

ious kernel data structures of the user VM, the THC

cannot directly kill a running application. Instead, once

a malicious application has been identified, the binary

name and any currently executing CR3 values corre-

sponding to this binary are blacklisted. If the malicious

application attempts to make any further socket sys-

tem calls, the hypervisor returns an error resulting in a

system call failure. This forces the kernel to return an

error, effectively denying service to the application.

4. EVALUATION

In this section, we describe the experimental setup

and the specific experiments that we used to illustrate

the defense-in-depth approach of our prototype Titan.

4.1 Experimental setup

Mobile devices equipped with specialized SIM cards

can connect to the base station in our 3G wireless lab.

The devices that we use in our experiments are the

HTC Aria smart phone and the Viliv S5. The HTC

Aria phone is equipped with a Qualcomm MSM 7227

Chipset, a ARMv6 600 MHz processor, and 291 MB

of memory. We run the CyanogenMod 7 distribution

[4] and Android version 2.3.4, API version 10 on the

phone. The trusted component runs as a kernel mod-

ule on this phone. The Viliv S5 is equipped with an

Intel Atom Z520 1.33 GHz processor, 4.8” touch screen,

32GB hard drive, 1GB of memory, WiFi, Bluetooth, a

3G modem, and GPS. We use the Xen 4.0.1 hypervi-

sor in paravirtualized mode. The privileged VM runs

Fedora 12 with Linux 2.6.27.42 patched for Xen dom0

support while the User VM runs CentOS 5.5 with Linux

2.6.27.5 including Xen paravirtualization support.

4.2 Malware Prevention

We describe here the experimental setup that we have

to prevent mobile devices from downloading known bad

content and apps. Once resources are identified as ma-

licious, future access is blocked, effectively protecting

end users from downloading malicious content.

4.2.1 Behavioral Scanning of Apps and URLs

The Titan architecture uses a cloud-based malware

analysis service to behaviorally scan applications and

URLs offline. When a user downloads an application

through an app store and/or has an application trans-

mitted to his device, the download request URL, con-

taining an application identifier, is observed by the packet

inspector in the network. Titan uses this identifier to

download the application through the normal app store

channel and does not expose the user that has down-

loaded the application in any way. Due to privacy con-

cerns, we do not rely on any sensitive information of the

user and do not obtain applications from user devices.

Titan currently only intercepts apps downloaded from

the official Android market, but can be easily extended

to include other app stores as well.

If an app has never been downloaded before or its

status has expired, either the application identifier or

application itself is sent to the cloud-based service for

static and behavioral analysis. The static analysis phase

involves quick checks against previously known mal-

ware signatures and identifies an application’s possi-

ble characteristics based on permissions, API calls and

app metadata. On the other hand, behavioral analysis

of the application is conducted by emulating simulated

user actions within a mobile emulator sandbox to deter-

mine what the application does. The analysis platform

records various characteristics of an application such as

system calls, bandwidth utilization and connections to

domains/IPs. If the application sends SMS spam, at-

tempts to gain root access, connects to a bot master,

etc., the application is flagged as malware. Network

characteristics, such as command and control servers or

SMS spam messages, are logged in the database for use

in the NMD.

In order to trigger malicious features of an app, user

behavior is dynamically generated while the app is run-

ning. Depending on the complexity of the malware,

multiple levels of scanning may be needed such as be-

9

havior after reboot, directed user-like behavior, and ran-

dom aggressive crash testing. Though some apps may

take up to 2 hours to analyze, in general we found that

most malicious apps currently trigger their malicious

functionality right after execution, in which case will be

detected and generate a network signature within three

minutes. The app analysis platform currently incurs

a false positive rate of 1 in 10,000 and is continuously

improving over time.

The Filter blocks an app download if the app was

previously flagged as malicious. If the app has been

downloaded before and was reported as benign, no new

request is sent to the cloud service and the app can be

downloaded as normal.

Similarly, when a user visits a URL on the mobile

phone’s browser, the URL is forwarded to the cloud

service to scan for drive-by-downloads that might be

initiated by that URL. The cloud service uses its mal-

ware analysis platform to conduct both static and be-

havioral checks to determine what the URL does, and

the URL is flagged if it attempts to conduct a drive-

by-download or is identified to be a phishing URL. The

malware analysis platform used for URL detection had

a low false positive rate, approximately 1 in 10,000,000.

A similar caching mechanism with a set timeout is used

to avoid redundant requests to the cloud service.

4.2.2 Scan Frequency and Caching

In order to put an upper bound on the number of

users that can be infected in between scans of a resource,

the frequency of scanning is chosen to be proportional

to the frequency of accesses. Such an approach allows

for an elegant trade-off between the scanning cost and

level of security desired. If a resource is very popular,

it is scanned more frequently as an infection of that

resource could affect many users quickly, whereas if a

resource is less popular, the cost of scanning it is kept

in proportion with its low usage.

In our experiments, we send every new request that

has not been refreshed within the past four hours to the

cloud service for scanning. Upon the first visit of a ma-

licious website or attempt to download a malicious app,

we found that subsequent users are protected from vis-

iting the website by the Filter component, which blocks

access to the URLs found to be malicious.

4.3 Malware Detection and Mitigation

This set of experiments illustrates how Titan effec-

tively detects and mitigates malware on the end mobile

device. In all the experiments, we run the malware on

the device and the network detector generates an alert

as soon as it detects the first malicious flow. The MiE

generates the threat profile and sends it to the THC

on the device, which accurately identifies the malicious

application and stops it from executing on the device.

It is further blacklisted and prevented from running in

the future.

4.3.1 Android malware

Table 1 shows the malicious apps tested, some of

which were uploaded into the official Android market

and were downloaded by users. We use these in our

experiments as they form a good representative set of

malware that exists today for Android phones. Column

1 shows the malware name. Column 2 shows the type

of malware that we obtained from our forensic analysis

and documentation publicly available about the mal-

ware. Column 3 shows the network behavior of the

application that was flagged as malicious.

All the malware samples were detectable in the net-

work because they performed one or more of the follow-

ing actions - (a) contacted malicious IP addresses (b)

contacted malicious domains (c) Sent SMS spam or (d)

Sent SMS to premium numbers.

The Trojan:Android/Geinimi.A is a repackaged sex

positions application that connects to a botnet. The

Exploit:Linux/DroidRooter.A, also popularly known as

DroidDream, is a repackaged version of a bowling game

application that also connects to a botnet and awaits

additional commands.

The Trojan:Android/Twalktupi.A, popularly known

as the ”Walk&Text” application, sends SMS spam to all

the contacts available in the contact list of the infected

device. Android.Trojan.Bgserv.A also sends SMS spam.

Android.Trojan.FakePlayer.A, Trojan:Android/Hippo-

Sms.A and Android.Trojan.GGTracker.A all send SMS

messages to premium numbers.

Plankton and GoldDream.A are spyware applications

that connect to malicious domains and leak sensitive in-

formation, such as IMEI numbers. GoldDream.A logs

incoming SMS messages to a local file and sends this

over to the attacker. Plankton 1 was added to about

ten other applications on the official Android market

from three different developers. Its stealthy design also

explains why some earlier variants have resided on the

market for more than two months without being de-

1Prof. Jiang’s research group at NC State Univ identified
Plankton as spyware, but the authors of Plankton claim to
be a legitimate ad network. Google suspended Plankton
from its Android Market.

10

Malware Name/Android Package Name Malware Type Malicious Network behavior

Trojan:Android/Geinimi.A Trojan, Bot Connects to several malicious domains

Exploit:Linux/DroidRooter.A Trojan, Bot Connects to a malicious IP address

Trojan:Android/Twalktupi.A Trojan, SMS spam
Connects to a malicious domain

Sends spam SMS

Android.Trojan.Bgserv.A Trojan, SMS Spam Sends SMS

Android.Trojan.FakePlayer.A Trojan Sends SMS to premium number

Trojan:Android/HippoSms.A Trojan
Connects to malicious domains

Sends SMS to premium numbers

Android.Trojan.GGTracker.A Trojan Sends SMS to premium number

Golddream.A Trojan, Spyware Connects to a malicious domain

Plankton Spyware Connects to a malicious domain

Table 1: This table shows the malware that we use to run experiments on the HTC Aria smartphone running

Android. All attacks were successfully detected by Titan and the malware was disabled from executing on the device.

tected by current mobile anti-virus software [10]. Since

Plankton runs a background service that connects to a

remote server, identified by a scanning request to the

cloud service, all apps that include Plankton would be

automatically detected by the NMD and disabled via

the THC.

Titan successfully detected and mitigated all malware

attacks on the end device.

4.3.2 Linux malware

On Linux, we chose malware that had some network

footprint, such as worms, malware that launches Denial

of Service (DoS) attacks, and bot software. Although

the Linux platform is not a popular target for malware

writers, we use real Linux samples and find that they

do illustrate the capabilities of Titan.

Table 2 shows the representative samples that we

used in our experiments. Column 1 shows the name

of the malware. Column 2 shows the type and Column

3 shows the network behavior that the Malware De-

tector used to flag the flow as malicious and generate

an alert. For IP and port scanners, the Malware De-

tector detects them based on the fact that the number

of connections to a diverse set of IP addresses/ports

exceeds a set threshold. Blacklisted IP addresses and

ports are detected in a similar fashion as the Android

malware, where the blacklists are constantly updated

from third party cloud services doing malware analy-

sis. DoS attempts are detected when malware tries to

open connections to a given IP address or a set of IP

addresses within a specified period of time that exceeds

the normal threshold. In all the experiments with Linux

malware from the set above, the malware detector suc-

cessfully detected the malicious flows and the malware

on the device was correctly identified from the threat

profile generated by the MiE. The malware was subse-

quently disabled and blacklisted from running on the

device in the future.

4.4 Performance

Below, we discuss the response time and the perfor-

mance overhead of Titan.

4.4.1 Response time

Automated mitigation has the potential to protect

many users as well as a mobility provider’s network

from the negative effects of malware. For instance, in

the DroidDream attack that took place in March 2011

in which over 260,000 users had downloaded malware

to their phones, automated mitigation could have pro-

tected most users.

DroidDream was injected into re-packaged versions

of over 50 of the most popular applications on Google’s

Android Market, and once downloaded, the malware

shipped the user’s IMSI/IMEI numbers and other per-

sonally identifiable information (PII) to a bot master.

The attack was first noticed on March 1, 2011 [7], and

Google started rolling out a fix in the form of the An-

droid Market Security Tool on March 5, 2011. While

data is not available regarding the download rate of

DroidDream applications, by assuming a uniform down-

load rate we can do a back-of-the-envelope calculation

as to how many users could have been protected using

automated mitigation.

As per the forensics for DroidDream, identified by

Titan as shown in Fig. 4, an infected phone can be

identified by a connection to the DroidDream bot mas-

ter, 184.105.245.17. Once DroidDream and its bot mas-

11

Malware Name Malware Type Malicious Network behavior

Trojan-DDoS.Linux.Fork Bot Connects to a blacklisted destination server and port number

Trojan-Spy.Linux.XKeyLogger.b Port scanner, Keylogger Conducts high rate TCP port scan

Net-Worm.Linux.Cheese Worm Connects to random IP addresses on a specific port

Net-Worm.Linux.Mworm.a Worm IP/Port scan over specific IP ranges

Trojan-DDoS.Linux.Blowfish Worm Connects to a blacklisted port

DoS.Linux.Arang DoS Creates a denial of service attacks to a specified victim

FTP AnoScan Port Scanner Scans for open FTP ports

FTPNullSearch02 Port Scanner Scans for open FTP ports

Flooder.Linux.Alcohol.a DoS Creates a denial of service attacks to a specified victim

Table 2: This table shows the malware that we use to run experiments on the ViliV S5 running Linux inside a Xen

VMM. The network behavior was flagged as malicious, and the malware was disabled from executing on the device.

ter are identified as malicious, Titan can contain mali-

cious effects on all phones which download DroidDream

thereafter. In particular, the mitigation engine would

instruct the trusted component on the phone to kill

the DroidDream process, and firewall off communica-

tion with the bot master. If 260,000 phones were in-

fected by March 5, and the infections started on March

1, then approximately 2,200 phones were infected per

hour. If a threat profile were to have been deployed by

the mitigation engine within the first hour, then 99.2%

of attempted DroidDream infections that occurred af-

terwards would not result in PII leakage or compromise

of the phone. In addition, for the 0.8% of phones that

were already infected, the DroidDream process could be

killed and communication with the bot master could be

cut off to prevent further damage.

4.4.2 Performance Overhead

In this section, we run the following three workloads

to record the overhead generated by running the THC

on the device.

Browsing Workload. We use an automatic brows-

ing script to measure our overhead against a typical

mobile browsing experience. During the experiments we

visited google.com, gmail.com with an account opened,

and cnn.com. The script also watches a 60 second YouTube

clip, within the browser on Linux and within the YouTube

app on Android. Lastly the script checks an email ac-

count using the Thunderbird application on Linux and

the default email application on Android.

To measure the overhead, we execute the workload

on each platform both with and without the host com-

ponent. We measure the time the workload executes

using the wall clock time and average the results over

five runs of the experiment. The results are summa-

rized in Table 3. The in-kernel implementation on An-

droid incurs a minimal overhead of 1.2%, while the

VMM based implementation incurs a 9% overhead. The

higher overhead is caused by the increased complexity

of the hypervisor-based host component compared to

the in-kernel version.

File Download. Mobile device users frequently down-

load small files, such as music MP3s or applications

from various app stores. To measure the overhead of

a similar file download, we downloaded a 5 megabyte

file from [21]. We performed this experiment on both

the Linux and Android platforms by using the wget

command. Because the file download initiates a sin-

gle TCP connection we observe minimal overhead and

report the download time overhead for both the kernel

and hypervisor-based host component as 1.7% and 0.7%

respectively. In each case the overhead is minimal and

within the standard deviation of the workload.

CPU Intensive Workload. For completeness we

include a CPU intensive workload for the hypervisor-

based component. Because we trap every system call

within the hypervisor, we wanted to observe the over-

head of the system in general. We chose a CPU in-

tensive workload designed to measure OS performance

called lmbench [44]. Lmbench exercises multiple OS in-

terfaces and calls numerous system calls. We report an

average overhead of (1.5%) and a standard deviation

within both experiments, with and without the host

component.

5. DISCUSSION

In this section, we discuss counter attacks, scalability

issues and the limitations of our approach.

5.1 Subverting the host component

The attacker might be able to subvert the host com-

ponent in one of the following ways:

12

Android THC Linux THC

Workload Without THC With THC Without THC With THC

Web Browsing 150.2 +−1.6s 152 +−2s(1.2%) 198.2 +−2.9s 216.4 +−8s(9.2%)

File download 114 +−0.7s 114.2 +−1.6s(1.7%) 114.4 +−3.2s 115.2 +−2.9s(0.7%)

LMBench N/A N/A 198.3 +−0.6s 201.3 +−2s(1.5%)

Table 3: This table shows the performance overhead recorded for three different workloads resembling user actions

on the device with and without the trusted host component (THC)

Root the device. On non-virtualized platforms, such

as smart phones available today, the trusted host com-

ponent runs as part of the operating system kernel. Sev-

eral instances of malware on the Android platform have

been known to root the device and install a rootkit [13],

potentially compromising the integrity of our host com-

ponent. We recommend that the ultimate deployment

of this architecture only be made on platforms that sup-

port our virtualization-based trusted host component.

Send commands via 3G. An attacker may try to

subvert the trusted host component when it is con-

nected to the Internet via 3G/4G. For example, by send-

ing commands to the trusted component, an attacker

might attempt to remove their app from the blacklist

or disable other benign apps for malicious intent. This

involves the attacker sending commands to the special

port that the trusted component on the device listens

to. Apart from the fact that the attacker does not pos-

sess the keys for communicating with the device, the

GGSN can be configured to block all communication

to this port from other devices on the Internet as well

as devices within the mobility network itself. The only

communication that happens on this secure port is be-

tween the Mitigation Engine and the device.

Parasitic Malware. In some cases, malware can

inject itself into other benign system processes. This

is an especially popular technique used with malware

that infects PCs running the Windows operating sys-

tem [50]. In such cases, the trusted host component

will identify the infected system process as malicious

and kill it. While it is not clear if malware on mobile

devices are following a similar trend, the host compo-

nent can be trivially extended to identify the correct

malware program by using techniques discussed in [50].

5.2 Scalability

When deployed in a real network, Titan should be

able to handle millions of devices and traffic sent by

them. While Titan is a prototype, it can leverage sev-

eral well-known techniques to handle scale in a real net-

work. The packet inspector can be a passive sniffer

that can sniff traffic at very high speeds [25, 26, 38].

Databases can handle queries and very fast lookups of

terabytes of data [30, 22]. The workload of other com-

ponents, such as the mitigation engine, the filter and

the malware detectors can be split by using large clus-

ters of machines and load balancing techniques already

used in large data environments.

5.3 WiFi Offload

Due to both data cap and bandwidth limitations, mo-

bile device users typically offload traffic toWiFi hotspots

when available. Though Titan’s network component

does not have visibility into traffic that is offloaded via

WiFi, each device still logs its own network activity

in the host component. Since there are still millions

of other customers currently connected to the mobil-

ity network at any given time, Titan’s network detec-

tion algorithms maintain their global visibility and ef-

fectiveness. If a significant threat is detected, Titan

can proactively communicate with devices that are cur-

rently connected to WiFi via an out of band channel,

such as SMS or WAP push, to ensure that the device is

not effected by the threat.

5.4 Limitations

The approach that we propose offloads detection to

the network, while the host component does much of

the mitigation and prevention. This is well suited to

attacks that manifest themselves in the network, which

the network provider has a good view of, such as, bot-

net command and control patterns, spread of worms,

DDoS activities, malicious applications phoning home

and so on. These activities are generally characteris-

tic to mobile malware where attack activity is driven

by economic incentives. However, malware can be de-

signed to be largely focused on the device and operate

without a network footprint. Our approach cannot de-

tect malware that is purely device centric. In such cases,

we assume the presence of other anti-virus software on

the device that can detect such malware.

With network level detection techniques catching up,

13

malware can become more stealthy and piggyback on

genuine network traffic for communication with its con-

trolling servers or spread to other devices. Stealthy mal-

ware is a challenge to detect in the network and would

be challenging for our approach as well.

6. RELATED WORK

We can classify related work in three main categories:

network-based detection techniques and host based de-

tection techniques that we leverage, and work that uses

a combination of network and host based techniques.

There is a large body of work on network-based anomaly

detection. Recent work has focused on detecting botnet

command and control communication patterns based

on protocols and heuristics [40], presence of a botnet

infection cycle visible from the network [32], spatio-

temporal correlations in network traffic [33] and clus-

tering of network traffic [31] for detection of botnets. A

similar body of work exists for other types of malware

such as worms [52, 41, 53], exploit code inside network

flows [23], etc. Titan relies on efficient network-based

detection techniques and can leverage them to improve

its detection accuracy and efficacy.

We leverage techniques for securely inspecting the

state of a user VM from a privileged VM as discussed in

prior work [29, 18, 48]. Many VMM-based techniques

have been proposed to detect malware running inside

the user VM [43, 37]. Titan uses similar inspection

techniques to find a malicious application but relies on

network-based detectors to flag malicious traffic.

Zeng et al. developed a technique to improve the

accuracy of botnet detection by using additional infor-

mation on PCs, such as CPU and memory, via a com-

ponent installed on the PC [54]. Srivastava et al. used

a detector in the network to identify anomalous traffic,

while a host component attributed this traffic to iden-

tify parasitic malware on the end device [50]. Our work

differs in several ways from the above two works. We

focus primarily on mobile devices as opposed to devices

on the wireline network. We propose a defense in-depth

approach that can detect, prevent and contain malware

as opposed to only detecting it. The Titan architecture

is designed to be integrated in a real mobility network

and uses the on-host component only to prevent or mit-

igate an infection and therefore operates with a very

low overhead on the mobile device.

Airmid [45] proposes a similar idea of remote repair

where a network and host component act in tandem to

recover from mobile malware infections. At the high

level, our work shares the same insight but differs in

the following ways: (a) We have a complete end to end

working instance on a real 3G UMTS network where

we address the design and implementation challenges

encountered in realizing the architecture within the car-

rier. Airmid simulates the carrier side and assumes the

existence of a server that can handle malicious traffic

originating from mobile devices. (b) We report perfor-

mance overheads on mobile devices supporting two dif-

ferent architectures - an in-kernel component on HTC

Aria phones and VMM based architecture running Xen

on Viliv S5 devices. Airmid on the other hand only con-

siders an in-kernel implementation. (c) We perform ex-

periments with real mobile malware samples that have

posed real threats on the Android market and show that

our architecture can automatically identify malware and

recover the end devices from malware infections. Air-

mid on the other hand uses prototype malware samples.

Finally, Titan is built to interoperate with existing car-

rier equipment and does not require any changes within

the carrier network elements, and therefore lends itself

to easy adoption by carriers.

7. CONCLUSIONS

In this paper, we have described Titan, a new archi-

tecture for detection and containment of mobile mal-

ware. Titan employs a defense-in-depth approach where

in-the-network malware detectors identify and prevent

the spread of malware and communicate the threat to

an on-the-phone trusted software component to iden-

tify and neutralize malware on the device. This allows

mobility service providers to quickly respond to ongoing

malware threats and contain malware on mobile devices,

even in the absence of an anti-virus signature.

We reported on our experience and learnings from

design and implementation of Titan in our 3G wire-

less lab for its server-side infrastructure components,

and two prototype implementations for its client-side

components namely, a kernel-level implementation on

Android smart-phones, and a VMM-based implementa-

tion on Linux Viliv devices. The prototype implemen-

tation of Titan successfully achieved infection preven-

tion, effective detection, immediate containment, and

fine-grained response on a diverse, representative set of

real Android and Linux malware with a very low perfor-

mance overhead. While our research described in this

paper suggests that Titan has the potential to mitigate

a large majority of mobile malware infections, we also

discussed the potential counter attacks, scalability, and

limitations of the Titan architecture.

14

8. REFERENCES

[1] Android and security. http://googlemobile.
blogspot.com/2012/02/android-and-security.html.

[2] The bro network security monitor.
http://bro-ids.org/.

[3] Cloudmark mobile platform.
http://www.cloudmark.com/en/products/

cloudmark-mobile-platform/how-it-works.
[4] Cyanogenmod wiki.

http://wiki.cyanogenmod.com/index.php.
[5] Exercising our remote application removal feature.

http://android-developers.blogspot.com/2010/

06/exercising-our-remote-application.html.
[6] F-secure mobile threat report q2 2012.

http://www.f-secure.com/weblog/archives/

MobileThreatReport_Q2_2012.pdf.
[7] Infected apps in the android market.

http://goo.gl/cFNiX.
[8] iphone security bug lets innocent-looking apps go bad.

http://goo.gl/MMA2b.
[9] Lookout unveils the mobile threat network; verizon

the first to adopt lookout api. http://goo.gl/bRxLt.
[10] New stealthy android spyware – plankton – found in

official android market. http:
//www.csc.ncsu.edu/faculty/jiang/Plankton/.

[11] Okl4 microvisor. http:
//www.ok-labs.com/products/okl4-microvisor.

[12] Openggsn.
http://sourceforge.net/projects/ggsn/.

[13] Remote kill and install on google android.
http://jon.oberheide.org/blog/2010/06/25/

remote-kill-and-install-on-google-android/.
[14] Security alert: Spamsoldier.

https://blog.lookout.com/blog/2012/12/17/

security-alert-spamsoldier/.
[15] Snort. http://www.snort.org/.
[16] Universal mobile telecommunications system.

http://en.wikipedia.org/wiki/Universal_Mobile_

Telecommunications_System.
[17] Vmware mobile virtualization platform. http:

//www.vmware.com/products/mobile/overview.html.
[18] A. Baliga, L. Iftode, and X. Chen. Automated

Containment of Rootkit Attacks. In Elsevier,

Computers & Security, volume 27, 2008.
[19] F. Beck and O. Festor. Syscall Interception in Xen

Hypervisor. In MADYNES Technical Report, 2009.
[20] J. Bickford, H. Lagar-Cavilla, A. Varshavsky,

V. Ganapthy, and L. Iftode. Security versus Energy
Tradeoffs in Host-Based Mobile Malware Detection. In
Proc. 9th Conference on Mobile Systems, Applications

and Services, 2011.
[21] Think Broadband. Download test files.

http://www.thinkbroadband.com/download.html.
[22] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A Distributed Storage System for
Structured Data. In Proc. 7th USENIX Symposium on

Operating Systems Design and Implementation, 2006.
[23] R. Chinchani and E. van den Berg. A Fast Static

Analysis Approach to Detect Exploit Code Inside

Network Flows. In Proc. 8th Symposium on Recent

Advances in Intrusion Detection, 2005.
[24] M. Christodorescu. Behavior-based Malware

Detection. In University of Wisconsin-Madison,
August 2007.

[25] C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and
O. Spatscheck. Gigascope: High Performance Network
Monitoring with an SQL Interface. In Proc.

Conference on Management of Data, 2002.
[26] C. Cranor, T. Johnson, O. Spataschek, and

V. Shkapenyuk. Gigascope: A Stream Database for
Network Applications. In Proc. Conference on

Management of Data, 2003.
[27] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

I. Pratt, A. Warfield, P. Barham, and R. Neugebauer.
Xen and the art of virtualization. In Proc. 19th ACM

Symposium on Operating Systems Principles, 2003.
[28] W. Enck, P. Traynor, P. McDaniel, and T. La Porta.

Exploiting Open Functionality in SMS-capable
Cellular Networks. In Proc. 12th Conference on

Computer and Communications Security, 2005.
[29] T. Garfinkel and M. Rosenblum. A Virtual Machine

Introspection Based Architecture for Intrusion
Detection. In Proc. 10th Network and Distributed

Systems Security Symposium, 2003.
[30] R. Greer. Daytona and the Fourth-Generation

Language Cymbal. In Proc. Conference on

Management of Data, 1999.
[31] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner:

Clustering Analysis of Network Traffic for Protocol-
and Structure-Independent Botnet Detection. In Proc.

17th USENIX Security Symposium, 2008.
[32] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and

W. Lee. BotHunter: Detecting Malware Infection
Through IDS-Driven Dialog Correlation. In Proc. 16th

USENIX Security Symposium, 2007.
[33] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting

Botnet Command and Control Channels in Network
Traffic. In Proc. 15th Network and Distributed System

Security Symposium, 2008.
[34] K. W. Hamlen, V. Mohan, M. M. Masud, L. Khan,

and B. Thuraisingham. Exploiting an Antivirus
Interface. Computer Standards and Interfaces,
November 2009.

[35] J. Hwang, S. Suh, S. Heo, C. Park, J. Ryu, S. Park,
and C. Kim. Xen on ARM: System Virtualization
using Xen Hypervisor for ARM-based Secure Mobile
Phones. In Proc. 5th IEEE Consumer

Communications and Networking Conference, 2008.
[36] X. Jiang. An evaluation of the application verification

service in android 4.2. http:
//www.csc.ncsu.edu/faculty/jiang/appverify/.

[37] X. Jiang, X. Wang, and D. Xu. Stealthy Malware
Detection Through VMM-based “Out-of-the-Box”
Semantic View Reconstruction. In Proc. 14th

Conference on Computers and Communications

Security, 2007.
[38] T. Johnson, S. M. Muthukrishnan, V. Shkapenyuk,

and O. Spatscheck. Query-aware Partitioning for
Monitoring Massive Network Data Streams. In Proc.

15

Conference on Management of Data, 2008.
[39] S. T. Jones, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau. Antfarm: Tracking Processes in a
Virtual Machine Environment. In In Proc. USENIX

Annual Technical Conference, 2006.
[40] A. Karasaridis, B. Rexroad, and D. Hoeflin.

Wide-scale Botnet Detection and Characterization. In
Proc. 1st Workshop on Hot Topics in Understanding

Botnets, 2007.
[41] H. Kim and B. Karp. Autograph: Toward Automated,

Distributed Worm Signature Detection. In Proc. 13th

USENIX Security Symposium, 2004.
[42] P. P. C. Lee, T. Bu, and T. Woo. On the Detection of

Signaling DoS Attacks on 3G Wireless Networks. In
Proc. 26th IEEE Conference on Computer

Communications, 2007.
[43] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor

Support for Identifying Covertly Executing Binaries.
In Proc. 17th USENIX Security Symposium, 2008.

[44] L. W. McVoy and C. Staelin. lmbench: Portable Tools
for Performance Analysis. In Proc. USENIX Annual

Technical Conference, 1996.
[45] Y. Nadji, J. Giffin, and P. Traynor. Automated

Remote Repair for Mobile Malware. In Proc. 27th

Annual Computer Security Applications Conference,
2011.

[46] J. Oberheide and F. Jahanian. When Mobile is Harder
Than Fixed (and Vice Versa): Demystifying Security
Challenges in Mobile Environments. In Proc. 11th

Workshop on Mobile Computing Systems and

Applications, 2010.
[47] J. Oberheide and C. Miller. Dissecting Android’s

Bouncer. In SummerCon, 2012.
[48] B. D. Payne and W. Lee. Secure and Flexible

Monitoring of Virtual Machines. In Proc. 23rd Annual

Computer Security Applications Conference, 2007.
[49] P. Porras, H. SaÃŕdi, and V. Yegneswaran. An

Analysis of the iKee.B iPhone Botnet. In Security and

Privacy in Mobile Information and Communication

Systems. 2010.
[50] A. Srivastava and J. T. Giffin. Automatic Discovery of

Parasitic Malware. In Proc. 13th Conference on Recent

Advances in Intrusion Detection, 2010.
[51] P. Traynor, M. Lin, M. Ongtang, V. Rao, T. Jaeger,

P. McDaniel, and T. La Porta. On Cellular Botnets:
Measuring the Impact of Malicious Devices on a
Cellular Network Core. In Proc. 16th Conference on

Computer and Communications Security, 2009.
[52] K. Wang, G. F. Cretu, and S. J. Stolfo. Anomalous

Payload-Based Worm Detection and Signature
Generation. In Proc. 8th Symposium on Recent

Advances in Intrusion Detection, 2005.
[53] D. Whyte, E. Kranakis, and P. C. van Oorschot.

DNS-based Detection of Scanning Worms in an
Enterprise Network. In Proc. 12th Network and

Distributed System Security Symposium, 2005.
[54] Y. Zeng, X. Hu, and K. G. Shin. Detection of Botnets

Using Combined Host- and Network-level Information.
In Proc. 40th Conference on Dependable Systems and

Networks, 2010.

16

